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Abstract

This paper presents an analysis of a two-level decoupled Hamming network, which is a high
performance discrete-time/discrete-state associative memory model. The two-level Hamming
memory generalizes the Hamming memory by providing for local Hamming distance
computations in the first level and a voting mechanism in the second level. In this paper, we study
the effect of system dimension, window size, and noise on the capacity and error correction
capability of the two-level Hamming memory. Simulation results are given for both random

images and human face images.
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1. Introduction

The design of high performance associative memory has long been a goal of artificial neural
net researchers (Hassoun 1993). A practical low-cost device which could store and retrieve
information similar to the human “content addressable” memory would be revolutionary and
would have numerous applications in such areas as image processing, face, character and voice
recognition, data bases, control systems, and robotics.

Unfortunately, although many neural models have been proposed, there is still today no
practical associative memory available as an off-the-shelf item. Existing models of associative
memory suffer from one or more of the following serious design flaws: limited capacity, low or
unquantifiable error correction capability, a large number of spurious memories, and impractical
hardware implementation.

The problem of limited capacity is self-explanatory: The purpose of an associative memory
(or any memory for that matter) is to store information. So, no matter how mathematically
elegant, an associative memory which can’'t store much information is practically useless. The
problem of unquantifiable error correction is also very serious, but is usually overlooked. In terms
of the hardware implementation problem, difficulties arise either from requiring complicated
hardware or else requiring an excessive number of interconnection weights (for example, fully
interconnected architectures).

Presently, for the case of discrete-time/discrete-state systems, the associative memory model
which comes closest to meeting all essential design criteria is conceptually the simplest: the
Hamming associative memory. But although the Hamming associative memory has huge capacity
(exponential in the input dimension), offers precise bounds on error correction capability, and has
no spurious memories, it suffers from impractical hardware implementation and slow retrieval
speed.

Recently, several models of associative memory which generalize the operation of the

Hamming associative memory have been introduced:gtbended Hamming memoiyVatta,
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Wang, and Hassoun, 1997), thellular Hamming memoryWatta, Hassoun, and Akkal, 1997),

the decoupled Hamming memomnd thetwo-level decoupled Hamming memdiyeda, Watta,

and Hassoun, 1998). These models retain the high performance properties of the Hamming net,
but allow for a much more practical hardware implementation and faster retrievals by utilizing
local Hamming distance measures.

This paper presents an analysis of the most promising of these generalized memories: the
two-level decoupled Hamming memory. We derive the capacity of this model as a function of
system dimension, local window size, and incident noise. The results indicate that the two-level
network can tolerate large amounts of uniform random noise.

The remainder of this paper is organized as follows. Section 2 reviews the operation of the
Hamming associative memory. In Section 3, the Hamming memory is mapped onto a parallel and
distributed processing (PDP) framework involving local Hamming distance computations. This
direct PDP implementation is called the decoupled Hamming memory, but suffers from a serious
spurious memory problem. Section 4 discusses how this spurious memory problem can be
eliminated by introducing a voting mechanism and a two-level network architecture. Section 5
presents a theoretical analysis of the capacity and error correction of the two-level decoupled
Hamming memory for memory sets consisting of uniform random patterns. In Section 6,
simulation results on random memory patterns are given which correlate well with the theoretical
predictions. Section 7 gives simulation results on a more practical memory set consisting of
human face images. Finally, Section 8 summarizes the results and discusses future extensions of

this work.

2. The Hamming Associative Memory

In the following, we consider the binary autoassociative memory problem. In this case, the
given fundamental memory set is of the fofm", x*, ..., x"} , where each paern  Nskin

binary vector, i.e.x' 0 {0, 1}" i = 1,2 ..., m . The task is to design a system which associates
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every fundamental pattern with itself. That is, when presentedxiith  as input, the system should
producex' at the output. In addition, when presented withiay(corrupted) version of'  at the
input, the system should also produée  at the output.

Let the Hamming distance between two binary vectors ywnd (of the same dimension) be
denoted asl(x, y)

The design phase of the Hamming memory involves simply storing all the patterns of the
fundamental memory set. In the recall phase, for a given input memorw k&y0, 1} " , the

retrieved pattern is obtained as follows

(1) Compute the Hamming distanas= d(x,x*) k = 1,2 ..., m
(2) Select the minimum such distargge = min{d,, d, ..., d..}

(3) Output the fundamental memoyy= x¥ (closest match)

It can be shown that the Hamming memory has exponential capacity and very large error
correction capability (Chou, 1989; Hassoun and Watta, 1996). In fact, the performance of the
Hamming memory can be shown to be optimal in the sense of classical statistical pattern
recognition (Hamming, 1986).

This important fact—that no other memory can outperform the Hamming memory—
indicates that the best place to start in formulating a high performance associative memory is with
the Hamming memory itself. Unfortunately, there are several serious disadvantages of this model.
First, the memory retrievals are slow because the memory key has to be compared to each
fundamental memory. Second, each bit of the output pattern depends on each and every input bit.
Hence, a direct hardware implementation of the Hamming memory would require full
interconnectivity, and hence is impractical.

In the following sections, we develop and analyze an associative memory model which
localizes the Hamming distance computations, making it suitable for implementation on parallel

and distributed processing systems.
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3. The Decoupeld Hamming Memory

Notice that for the Hamming net formulated above, each output bit is a function of the entire
input vector; i.ey; = Vi(Xy, X,, ..., Xy) foreach = 1,2 ..., N . Substantial savings in hardware
may be achieved by restricting the dependence of each output to a small fraction of all possible
inputs, resulting in the computationlotal Hamming distanceeasures.

The decoupled Hamming associative memlayalizes the Hamming distance computation
by partitioning the input vector into nonoverlapping modules or local windows, and performing
the Hamming memory operation on each module independently. To be precise, suppose we
partition the N input variablesX = { x;, X,, ..., Xy} of our memory intav local windows:

{ Xy, X5 ...y Xy} such thatX; O X X, = X ,an&; n X; = 0 i#j . To simplify notation,
assume that each local window has the same number of variables, denloiguis case, we have

X =n,i=12..w, wherew = N/n is the total number of local windows. Figure 1
shows the structural difference between (a) the full Hamming memory and (b) the decoupled

Hamming memory.
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Figure 1. Structure of (a) the full Hamming and (b) the decoupled Hamming memory.

Each window is a local Hamming memory and has its own local memory set, which is

obtained by partitioning each fundamental memory int0 memory subvectors:
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X“ =[x, ...x(w], where theith subvectorx{, 0{0, 1}" contains the components xf
specified by the variables in tlign moduleX; . In this case, we can associate with each module its
own local memory set of the formy, = { Xy, .., X(h}

The decoupled Hamming memory operates as follows: The memory key is partitioned in
the same fashion as the fundamental memones: [X), ... Xw)] , and thedule Hamming
memories independently (and in parallel) operate on each of the subvectqrsarhputing the
Hamming distanced(x, xX§,) k = 1,2 ...,m , and outputting the closest matching pattern.

In the case of 2-dimensional patterns, there are many different topologies possible for the
layout of the local Hamming memories. For example, the local Hamming memories may be
arranged by row, by column, or in a checkerboard arrangement, as shown in Figure 2(a). Here, the
64 x 64 binary image is covered with nonoverlappiag x 16  windows in a checkerboard-type
layout. Each local Hamming memory then computes 256-bit Hamming distances as opposed to

4096-bit Hamming distances for the entire image.

64 bits

64 bits

A

16x% 16
windows

(a) (b)
Figure 2. (a) Structure of local memories arranged as a grid of nonoverlapping
16 x 16 windows ina 64 X 64mage. (b) A spurious memory.
One clear advantage of the decoupled Hamming memory over the full Hamming memory is
retrieval speed. Since all modules can perform their computations in paralldbld speedup in
retrieval time can be achieved by dedicating a processor to each module. A disadvantage of this

stringent parallelism, though, is that the decoupled Hamming memory may retrieve a pattern
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which was not part of the memory set; i.e., spurious memories are possible. For image processing
applications, for example, the decoupled memory may converge to an image which is
predominantly one of the fundamental images, but contains scattered “chunks” of other images,
as shown in Figure 2(b). The full Hamming network, on the other hand, never retrieves spurious

memories.

4. The Two-Level Decoupled Hamming Associative Memory

To avoid the spurious memory problem of the previous section, a two-level structure can be
used which consists of a decoupled Hamming memory along with a higher-level decision
network. The architecture of this memory (in the case of 2-dimensional memory patterns) is
shown in Figure 3(a). Here, each local Hamming memory or module computes the closest
matching pattern and sends the index  of the best match pattern to the decision network. The
decision network examines the indicgsl ,, ..., I, of all the modules and computes a single best
match indexl” . Each memory module then outputs its portion of the fundamental mefmory —;
that is, each module output$, i,= 1,2 ...,w . Since the decision network forces all modules
to output the same fundamental memory, the spurious memory problem of the previous section is

eliminated.

Decision
Network

Decision
Network

Figure 3. Structure of the two-level decoupled Hamming network. Numbers in (a)
represent the index of the closest matching pattern(s), and (b) shows the result
after the voting.
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For example, in Figure 3(a), the window in the upper left hand corner of the image best
matches image 5 in the memory set, while the window in the lower right hand corner best matches
images 1 and 6 (there is a tie in the Hamming distance). The decision network examines all the
votes from the local windows, determines that 5 is the most prevalent, and forces all windows to
output its portion of image 5, as shown in (b).

There are many ways to design the decision network. In the simplest case, a majority rule is
used, in whichl™ is chosen to be the most frequent index amoeng, ..., |, . Utilizing the
emerging theory otlassifier combinatior(Bishop, 1995) andensor fusionHo, et al. 1994),
more sophisticated decision rules can be formulated. In this case, it may be desirable for each
module to send an ordered list of, say, the best 3 indi¢cek , I;, to the decision network. For
very noisy patterns, the second and third choices of each module may contain useful information
which can be exploited with an appropriate combination scheme. In the analysis which follows,

we assume that the decision network uses a simple majority rule.

(b)

Figure 4. Selective coverage of input image with (a) random placement and (b) strategic
placement of modules.

Note that the two-level decoupled Hamming memory can still function even if the entire
image is not covered by local windows. For example, instead of covering the image completely as
shown in Figure 2(a), we can cover, say3 of the image as shown in Figure 4(a). Here, the local
memories are randomly scattered over the entire image. In the case of human face recognition, a

priori information can be exploited to place the covering modules for optimal performance. For
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example, Figure 4(b) shows a partial covering of the image in the expected nose and eyes region
(center of image).

Assuming a majority rule for the decision network, and as with the single layer decoupled
Hamming network, it is easy to see that the two-level decoupled Hamming network reduces to the
full Hamming network in the case of a single modwe:= 1 . But unlike the single layer model,
the two-level decoupled Hamming memory with majority rule decision network also reduces to
the full Hamming network in the other extreme cage= N . In this case, each pixel (module) of
the image chooses those memory set images which have the same pixel value. The memory set
image closest to the test image (in a Hamming distance sense) will necessarily get the most votes
among all the modules, and hence the output of the two-level network will be the same as that of
the Hamming network.

The most important performance measure of an associative memory is its capacity, or how
many patterns it can reliably store (Hertz, Krough, and Palmer, 1991). Typically, statistical
methods are used to derive capacity measures (Willshaw, Buneman, and Longuet-Higgins, 1969;
Palm, 1980; Buckingham and Willshaw, 1992; Kawamura and Hirai, 1997).

The two-level decoupled Hamming network achieves the optimal performance of the
Hamming memory for both the maximum and minimum number of modules. For intermediate
window sizes, the capacity of the two-level decoupled Hamming memory is not as large as the full
Hamming memory. But even so, the two-level decoupled Hamming memory with intermediate
window size has a much higher capacity and much more error correction than most of the
standard neural-based associative memories, such as the correlation-recorded Hopfield network
(Hopfield, 1982), and other recording algorithms for the same single-layer Hopfield-type neural
structure (Hassoun, 1993, 1995).

Besides its performance advantages over standard neural net models, the two-level decoupled
Hamming net is ideal for parallel hardware implementation. Since the first level is modularized,

the computation can be done in parallel. Indeed, special purpose hardware consisting of a dense
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array of digital signal processors already exists which can perform the required computations

efficiently [see, for example, Pulkki and Taneli, (1996)].

5. Capacity Analysis of the Two-Level Decoupled Hamming Memory

In this section, we derive the capacity of the two-level decoupled Hamming memory. Figure
5 shows a schematic of the fundamental memory set and an input memory key. In this case, the
memory patterns are shown as 2-dimensional images; however, in our analysis, we still assume
the memory elements consist of (one-dimensional) column vectors.

In the previous section, we discussed how the memory key and each of the fundamental
memories are modularized intedimensional windows. One suchwindow is highlighted in the
memory key shown in Figure 5. The correspondimgvindow is highlighted in each of the
fundamental memories, as well.

We assume that the memory set consists of uniformly random vectors. That is, each bit of a
fundamental memory has a 50 percent chance of being 1 and 50 percent chance of being 0. In
addition, it is assumed that the memory key is a corrupted version of one of the fundamental
memories. In particular, the memory key is obtained by adding an anpount  of uniform random
noise to one of the fundamental memories—calledté#tiget memoryi.e., with probabilityp ,
each bit of the target image is flipped from its original value. Each of the remamnd
fundamental memories will be calledren-targetmemory, orother memory (short for “other

than the target”).
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Memory Set
Image 1 Target Image d Imagei Imagem
n bits N > y)
N-bit image
J d, d,
14
Memory Key

Figure 5. The fundamental memory set and memory key for the 2-level decoupled

Hamming memory. With respect to the highlighted n-windows, the Hamming

distance between the memory key and the target window is denoted , the

Hamming distance between the memory key and the ith non-target memory window

in the memory set is denoted  dand the Hamming distance between the target and

a non-target memory window is denoted  .d;

The analysis will proceed by first computing the probability that the given local window

votes for the target memory and the non-target memories, then the number of votes for the target
memory and non-target memories will be computed, and finally, the capacity will be estimated by

computing the probability that the target memory gets the highest number of votes.

5.1 Probability of Voting for the Target and a non-Target Memory

In reference to Figure 5, let us fix a window in the memory key (say, the highlighted
window), and let us fix the corresponding window in each of the fundamental memories. In
addition, of them—1 non-target memories, let us focus our attention on a single one of them, say
theith memory.

Let d; denote the Hamming distance between the highlighted local window of the memory

key and the corresponding window of the target memorydlet  denote the Hamming distance
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between the highlighted local window of the memory key and the corresponding window of the
ith (non-target) image in the memory set, anddet  denote the Hamming distance between the
highlighted local window of the target image and the corresponding windittvioiage.

Clearly, since each of the fundamental memories is a uniform random binary vector, then the

probability thatd, = j bits (wher@< j<n ) follows a binomial distribution of the form

ponca= = G212 = Y]

where %‘E is the number of combinationsnatems chosepat a time, and is given by
MmO — n!
oo ji(n-j)!

Also, since the memory key is obtained by uniformly perturbing the target image with an
amount of noisep , then the probability thdt = k bi@{k<n ) also follows a binomial

distribution of the form

Prob(d = k) = E[Eok(l—p)”‘k @)

Another quantity that will be of interest iBrob(d = j|d, = k) . That is, assumthg= k
bits, we want to compute the probability thét = | bits. The target image andhtmemory
image are created completely independently of each other. If some of the bits of the target image
are subsequently flipped (which is how the memory key is created), it is still independent of the
ith - memory image; henceProb(d = j|d, = k) has the same binomial distribution as

Prob(d = j):

n

0
oy = _ oy - dd_ gty
Prob(d = j|d, = k) = Prob(d = j) = 1= = DJ.EH 3)
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Note that each of the other non-target memories in the memory set follows the same
distribution, since each of the fundamental memories was created independent and uniformly
random. Hence, Equation 3 holds for each non-target meintotite memory set.

Now for which memory will the highlighted window vote? Well, for eakhl{0, 1, ..., n}
the target memory gets a votedf = k and d; > k for all otherm—1 memories (heré, ranges
over all indicesl, ..., m excluding the index of the target image). The probability that this occurs

is given by

m-—1

P, = P(n,p,m) = meuq=m[zpmmd=”¢=kﬂ
k=0 i=k
Substituting Equations 2 and 3 into the above Equation, we get

_ < OO -Oe O 17"
Pt(n1 p1 m) - kgotk%) (1_p) |:J|§k|:|J H:Z:| |:|
On the other hand, for eackJ {0, 1, ..., n} thdlh (non-target) memory gets a vote if
d, = k and d, <k and d; = d; for all otherm—2 memories in the memory set (her'e, ranges
over all indicesl, ..., m excluding indexk—for the ith memory—and the index of the target

memory). Hence, the probability that tlle image gets a vote, = Py(n, p, m) is given by
n D k . n m—ZD
P = zPmdd:MEzPmdd:”¢:M[ZPde=ﬂ¢=M} C 4)
k=0 j=0 $= |

Substituting Equations 2 and 3 into the above Equation, we get

n_m-2

P(n,p, m) = éoggok(l_p)n_k[éﬁ;aﬂngigaﬂE }

S=]

5.2 Number of Votes for the Target and non-Target Images

Thus far, we computed the probability that a single window will vote for the target and/or one
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of the non-target memories. The decision network of the two-level decoupled Hamming memory
counts up the votes for each of thewindows covering the memory key and then chooses the
fundamental memory with the most votes. Hence, the question here is: What is the total number
of votes received by the target and each of the non-target memories?

Let N, denote the total number of votes received by the target memoriand  the number of
votes received by thigh non-target memory. BotN, amidl are random variables which follow a
binomial distribution. The expected value and variance of the number of votes for the target are

given by
He = E[N] = P,
ol = V[N] = Pt(l—Pt)%
Similarly, the expected value and variance for the number of votes received ki then-

target memory is given by

- - pN
W = E[N] = Pin

0! = VIN] = P(1-P)Y

By the central limit theorem, and assuming a large number of windows, the probability
distribution of the random variabldd, amN  approaches a normal distribution. In this case, the
(approximate normal) density function ~ for the number of votes for the target image is given by

~(x—py)?

1 202
e (5)
A 21O,

fi(x) =

and the density functionf; for the number of votes for itie non-target memory can be

approximated by



A Two-Level Hamming Network 14

=)’
1 202
f(x) = e (6)
«/ﬁci
In the normal approximations of Equations (5) and (6), we assNmec w — 00 n end

held constant. Such approximations are useful in obtaining numerical vallés for N; and

5.3 Estimation of Memory Capacity

In the previous subsection, we determined the expected number of votes for the target image
and the expected number of votes for ttienon-target image. Of course the two-level decoupled
Hamming memory retrieves the correct (target) image wNen is largerNhan all fof the
m—1 non-target memories in the fundamental memory set. Thadis, must be largadthan
andN, and...andN,_, , where we have assumed, without loss of generality, that the target
memory is themth memory (last memory) in the fundamental memory set. To compute the
probability of correct retrieval, then, we must determine the maximum of the “other” or non-target

votes; hence, we define a quantity™”

N" = max{ N, N,, ..., N,_.} (7)

It can be shown that the maximum of a collection of continuous random variables is also a
random variable; furthermore, the cumulative distribution function (cdf) of the max random
variable is given by the product of the individual cdf’s of the random variables being maximized
(Port, 1994).

In this case, we haven—1 random variables which follow the continuous (and approximate)
probability density functions f,, f,, ..., f,,_.  given in Equation 6. Suppose that the
corresponding cumulative distribution functions are denoted=hyF,, ..., F,,_1 , respectively.

Then, since each of these—1 distributions are identical, we have

Fral¥) = Fi0)F2(X)...Fna(x) = [Fi(x)]" (8)
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max

The probability density function o\ can be obtained by differentiating Equation 8

fnal) = FFmal) = (M=1)[F]™ “fi(%) (9)
Using the density function in Equation 9, the expected valudl Bt can be computed as
follows:
N™ = E[N™T = [xfpna(x)dx (10)
Finally, the probability of correct retrieval is the probability thad,>N{ , ie.,

Peor = Prob(N,> Ni"™) which is computed below

1 202
e ' dx (12)
A 2TO;,

COF(n N p m) = I max

Using the standard normal distribution, Equation 11 can be recast as

2

cor(n N, P, m) = I max_ ﬁe dZ (12)

And using the standard error function
erf(x) = J’ ——e “dz
°Jm

Equation (12) can be written as

Peol(n, N, p, M) = 1[1+erf[“l/§6' D} (13)

Equation 13 gives the probability that the target image will be retrieved as a function of

system dimensioi, local window sizen, noise levelp , and total number of stored pattems
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Numerical estimates of the capacity of the memory, then, can be determined by fixing values

forn, N, andp , and computing Equation 13 for increasing values of

6. Simulations

6.1 Expected Number of Votes

For the simulations of the two-level decoupled Hamming memory presented in this section, it
is assumed that all memory patterns are 2-dimensional images and are generated randomly from a
uniform distribution. As with the above theoretical analysis, it is assumed that one of the memory
images (the target image) is selected and corrupted with an arpount  of uniform random noise
(0< p<0.5). This corrupted image is used as the memory key, and it is desired that the system
produce the target image at the output; i.e. retrieve the target image.

Figure 6(a) shows a comparison of the simulation and theoretical results for the expected
number of votes for the targall, , an arbitrary other image (other than talget) , and the
maximum among these other imaghis™* . For these simulations, 10, 000 images, the
noise level is set gp = 0.4 , and the local window sizenis 2 x 2 . The top Figure shows the
simulation results, and the bottom plot shows the corresponding theoretical distributions for these
guantities, as given in Equations 5, 6, and 9. In (a), the image size isNeta64 x 64 , While in

(b), the image size ISl = 128x 128
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Figure 6. Comparison between simulation and theory for the case of a 2x2
window size, input noise P = 0,4nemory size of m = 100@0d an image size
of (a) 64 x 64and (b) 128x 128
The simulation results were obtained as follows. The corrupted target memory (with 40%
random noise) was input to the two-level Hamming memory, and the number of votes received by
the target, a randomly chosen other (non-target) image, and the maximum among the non-target
images were recorded. This process was repeated 500 times. In each case, if the system retrieved
the target image, the retrieval was considered a success; otherwise it was counted as a failure. The
probability of correct retrieval was simply the number of successes out of 500 trials (Watta, lkeda,
Artiklar, Subramanian, and Hassoun, 1999).
Clearly, the theoretical results provide a good model for the underlying distributions. Note

that in both cases, there is sufficient separation in the distributiolds of Nand  to successfully
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perform the classification, and hence the probability of correct retrieval is Baity= 1

N = 64x 64 N = 72x 72
P = 0.56 . Peor = 0.71
AN Ni Nimax i Ni Ni X

N = 128x 128 N = 256x 256
Por = 0.996 Pir = 1.0
fd
na max
o3 Ni Ni i max
Sl . A N,
% 5 10 18 2 = - . % e - m = 100
J /1 N
ol fo [} o
ozl || f, i f, |
mp N ]| — Bib II fi
' - [ 1 2 = = 3 a - EII" ) ) _-:.;._____..;.;
(©) (d)
Figure 7. Comparison between simulation and theory for the case of a 4x4

window size and noise of P = 0.4nd a memory sizeof M = 10QG@d an image
size of (@) 64x 64 (b) 72X 72(c) 128x 128and (d) 256% 256
Figure 7 shows a case where there is overlap between the distributions. Here, the number of
images in the memory setim = 1000 , the input noispiss 0.4 , and the local window size is
n = 4 x 4. Figure 7(a) shows the results in the case of an image sike of 64 x 64 . Here, the
probability of correct retrieval i3 = 0.56 . Figure 7(b) shows the resultsNor 72x 72 .1In
this case, the probability of correct retrievaR&r = 0.71 . Similarly, (c) and (d) show the results

for larger image sizedN = 128x 128 ,and = 256x 256 . As expected, for a fixed number of

memory patterns, as the image size increases, the separation bidtweerN; and increases.
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6.2 Probability of Correct Retrieval

Fixing the system dimension & = 64 x 64 and the noise lev@ at 0.4 , the simulations
of the previous section were repeated for various values of the number of fundamental patterns
fromm = 10 tom = 10, 000. Figure 8 shows the probability of correct retrieval vs. the number
of stored patterns for various local window sizes. The dashed line gives the simulation result, and

the solid lines gives the theoretical values from Equation 13.

2x2

solid: P, (theoretical)

dashed: ng?(simulation)

Probability of Correct Retrieval
[
(=0
ll"‘.J
o
X
=)

10 10
Number of Images m

Figure 8. Probability of correct retrieval vs. number of stored
patterns m.

Note that when the window size does not divide the image size evenly (as Ghxlte and
10 x 10 windows), then some overlap of neighboring windows is necessary to cover the whole
image. In our simulations, we simply overlap the right-most modules and lower-most modules if
needed. So to cover tit@ x 64  image requir@s<a/ array dfakel0 windows.

As noted earlier, the two-level Hamming network reduces to the full Hamming memory in
both of the extreme cases for the window size. This is illustrated in Figure 8, where the small
2 x 2 neighborhood size gives very good performance. As the neighborhood size increases,
though, the performance degrades. In particular4tked window gives the worst performance.
By increasing the window size abo#ex 4 |, the performance improves.

Figure 9 shows the probability of correct retrieval when only portion of the image, as shown

in Figure 4, is covered by local windows (heié¢,= 64%x 64 p = 0.4 , and set at the worst



A Two-Level Hamming Network 20

possible valuen = 4 x 4 ). The dashed line gives the simulation result, and the solid lines gives
the theoretical values. Using fewer windows amounts to a reduction in the dimension of the

system and, as expected, the capacity decreases.
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Figure 9. Probability of correct retrieval for different percent
coverages: 20%, 40%, 60%, 80%, and 100%.

6. 3 Capacity and Error Correction

The notion of capacity that will be used here is as follows: Assuming an input noise level of
p, how many input patterns can be reliably stored? (Hertz et al, 1991; Kawamura and Hirali,
1997). This measure of capacity is based on the error correction capability of the associative
memory. That is, if some percentage of bits of the input pattern are corrupted, can the memory
still retrieve the correct pattern?

Plots of the capacity of the two-level decoupled Hamming memory can be generated as
follows. First, values fon, N, andp are fixed. Then, starting with a small value fiqrP,, is
computed using Equation 13. Initially, with such a smmJIP.,, is a near 1.0. Asn is slowly
increased,P.,, decreases in value. This process of decreasiagcontinued untilP,,, falls
below 0.99. In this case, the largest valuerofvhich givesP.,, = 0.99 is taken as the capacity
of the memory.

Figure 10 shows a plot of the capacity of the 2-level decoupled Hamming memory vs. the
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input noise level for various window sizegtx4 6x6 8x8 , addx 10 . For these
experiments, the image size was fixed\at= 64x 64 . As expected, the capacity decreases as the
noise increases.

Figure 11 shows a plot of capacity vs. image size for various values of input moise0.3

0.35, 0.4, and 0.45. Again, the image size is fixe@¥at 64
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Figure 10. Capacity vs. noise level for window sizes: 4x4 6x6
8x 8,and 10x 10
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Figure 11. Capacity vs. image size for various noise levels:
0.3, 0.35, 0.4, 0.45.

7. Correlated Memory Sets

The theoretical and simulation results given in the previous sections assumed that the patterns

to be stored consisted of random binary patterns. In practice, though, one usually wants to store
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highly correlated patterns, such as images of faces, fingerprints, voice waveforms, etc. To test the
performance of the two-level decoupled Hamming memory on such correlated memory sets, we
constructed a database of 200 binary face images (Watta, Artiklar, Masadeh, and Hassoun, 2000)
of size 82x115. Some samples of these face images are shown in Figure 12. In addition, Figure 12
also shows the face images corrupted with various amounts of uniform random noise. Notice that

at 25 and 40% noise, the recognition problem becomes difficult for humans.

Original
Image

10% Noise

25% Noise

40% Noise

Figure 12. Samples of 82x115-dimensional face images in the 200-person
memory set. The original images are shown in the top row, and subsequent
rows the patterns corrupted with various amounts of uniform random noise.
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For comparison with results presented in the previous section, the face images were cropped

to a size 064 x 64 and2x 72 pixels, as shown in Figure 13.
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Figure 13. Samples of 642x64 and 72x72-dimensional face images in the 200-
person memory set.

Table 1 shows the probability of correct retrieval over the 200-faces memory set using a noise
level of 40%. As with the binary images, the performance of the memory is high for small and
large windows and deteriorates slightly for intermediate-sized windows. Note that for noise levels
lower than 40%, the probability of correct retrieval is 100% for all window sizes and all 3 image

sizes.

N\n 2x2 3x3 4x4 9x9 15x15 20x20 25%x25
64x64 100 96 90 86 100 100 100
72X72 100 98 95 93 99 100 99
82x115 100 99 100 100 100 100 100

Table 1. Probability of correct retrieval (in percent) on the 200-image
memory set of human faces.

The results in Table 1 were obtained in a similar fashion to the experiments on the random
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images. Each of the 200 face images was corrupted with 40% noise and input to the two level
Hamming memory. If the output of the Hamming memory was the original person, then the trial
was counted as a success; otherwise it was counted as a failure. The probability of correct retrieval
was then the number of success over 200. The above process was repeated 25 times and the results

averaged over those 25 times.

8. Summary

In this paper, we investigated the computational capabilities of a class of associative memory
models called théwo-level decoupled Hamming associative memdhjs memory model is a
generalization of the Hamming associative memory, and allows for local distance measures and a
voting mechanism. We successfully formulated a theoretical analysis of this model which
characterized its memory capacity and error correction capability in the case of random memory
patterns. In particular, an expression was derived for the probability of correct retrieval as a
function of pattern sizeN, window sizen, noise levelp , and number of patterns stored,

Peor = Peod(n, N, p, M).

Simulation results were shown to be in close agreement with the theoretical results. More
importantly, the capacity of the two-level decoupled Hamming memory was shown to be
substantially larger than other single layer neural net memories, such as the Hopfield network. In
fact, the two-level decoupled Hamming network can perform well even when the entire input
image is not covered with local windows. The simulations results in Figure 8 showed a gradual
decrease in performance as fewer and fewer local windows were used.

As expected, the two-level Hamming memory performs best when a single local window is
used:w = 1 or when the maximal number of windows are used: N (each pixel is a local
window). For intermediate window sizes, the capacity of the two-level memory is not as large.
Interestingly, the worst performing local window size was found to be of 4izet (for random

input images).
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In the case of correlated memory patterns, simulation results showed that the two-level
decoupled Hamming memory can store and correctly retrieve several hundred human face
images, even in the presence large amounts of noise (40% bit errors).

The two-level Hamming network (and Hamming network) achieves associative memory by
using a template matching approach, where the input image is compared to each of the prototype
images. The sequential computation of comparing the input to each prototype is reminiscent of
the serial processing that humans do when asked to identify people whom they do not know
(Chellappa, Wilson, and Sirohey, 1995). The training time for template matching is O(1)
complexity, and simply consists of storing all the images in memory. In other algorithms, such as
neural net-based approaches, the training time is extremely long, but the retrieval time can be very
quick.

An obvious advantage of template-based schemes is that it is easy to add new individuals by
simply storing additional images or delete an individual by deleting the undesired prototype
images. Another advantage is that template-based systems are not limited to producing just a
single output, but can produce an ordered list containing the best matchikginsiyiduals.

The main disadvantages of template-based methods were pointed out in Duda and Hart
(1973): “. . . the complete set of samples must be stored, and must be searched each time a new
feature vector is to be classified.” Back in 1973 when this classic text was published, memory and
processing speed were indeed serious constraints. The severity of the storage/speed dilemma has
diminished in recent years with the availability powerful and low cost PCs, and hence the
template matching approach of the Hamming network warrants further consideration.

It is easy to see that there are applications, however, where the two-level Hamming memory
requireslessstorage than neural net-based approaches. Consider the simplest type of associative
neural memory: a single layer Hopfield-type network (Hopfield, 1982 and 1984). Suppose we
want to store &12x 512 gray-level image of each of the 9,000 undergraduate students at the

University of Michigan-Dearborn. In this case, the two-level decoupled Hamming memory
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requires about 2.5 GB of storage (of size character), whereas the Hopfield weight matrix requires
the storage of aboB8x 10  weights. Since weights are usually stored as floating point numbers,
the Hopfield weight matrix would require about 136 GB of memory (assuming 2 bytes for each
floating point number). Clearly, wheneverN< N° , the two-level decoupled Hamming memory
requires less storage than a single layer neural associative neural memory (ANM). Of course, the
single layer ANM is the simplest network architecture possible, and more sophisticated multilayer
associative neural memories usually require considerably mord&fthan  weights.

In future papers, we will extend the two-level Hamming network to the case of gray level
images and present additional results on the use of this memory for human face recognition

problems.
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