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Abstract

This paper presents an analysis of a two-level decoupled Hamming network, which is a

performance discrete-time/discrete-state associative memory model. The two-level Ham

memory generalizes the Hamming memory by providing for local Hamming dista

computations in the first level and a voting mechanism in the second level. In this paper, we

the effect of system dimension, window size, and noise on the capacity and error corre

capability of the two-level Hamming memory. Simulation results are given for both rand

images and human face images.
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1. Introduction

The design of high performance associative memory has long been a goal of artificial n

net researchers (Hassoun 1993). A practical low-cost device which could store and re

information similar to the human “content addressable” memory would be revolutionary

would have numerous applications in such areas as image processing, face, character an

recognition, data bases, control systems, and robotics.

Unfortunately, although many neural models have been proposed, there is still toda

practical associative memory available as an off-the-shelf item. Existing models of assoc

memory suffer from one or more of the following serious design flaws: limited capacity, low

unquantifiable error correction capability, a large number of spurious memories, and impra

hardware implementation.

The problem of limited capacity is self-explanatory: The purpose of an associative me

(or any memory for that matter) is to store information. So, no matter how mathemati

elegant, an associative memory which can’t store much information is practically useless

problem of unquantifiable error correction is also very serious, but is usually overlooked. In t

of the hardware implementation problem, difficulties arise either from requiring complic

hardware or else requiring an excessive number of interconnection weights (for example

interconnected architectures).

Presently, for the case of discrete-time/discrete-state systems, the associative memory

which comes closest to meeting all essential design criteria is conceptually the simples

Hamming associative memory. But although the Hamming associative memory has huge ca

(exponential in the input dimension), offers precise bounds on error correction capability, an

no spurious memories, it suffers from impractical hardware implementation and slow retr

speed.

Recently, several models of associative memory which generalize the operation o

Hamming associative memory have been introduced: thegrounded Hamming memory(Watta,
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Wang, and Hassoun, 1997), thecellular Hamming memory(Watta, Hassoun, and Akkal, 1997)

the decoupled Hamming memory, and thetwo-level decoupled Hamming memory(Ikeda, Watta,

and Hassoun, 1998). These models retain the high performance properties of the Hammi

but allow for a much more practical hardware implementation and faster retrievals by util

local Hamming distance measures.

This paper presents an analysis of the most promising of these generalized memorie

two-level decoupled Hamming memory. We derive the capacity of this model as a functio

system dimension, local window size, and incident noise. The results indicate that the two

network can tolerate large amounts of uniform random noise.

The remainder of this paper is organized as follows. Section 2 reviews the operation o

Hamming associative memory. In Section 3, the Hamming memory is mapped onto a parall

distributed processing (PDP) framework involving local Hamming distance computations.

direct PDP implementation is called the decoupled Hamming memory, but suffers from a se

spurious memory problem. Section 4 discusses how this spurious memory problem c

eliminated by introducing a voting mechanism and a two-level network architecture. Sect

presents a theoretical analysis of the capacity and error correction of the two-level deco

Hamming memory for memory sets consisting of uniform random patterns. In Sectio

simulation results on random memory patterns are given which correlate well with the theor

predictions. Section 7 gives simulation results on a more practical memory set consisti

human face images. Finally, Section 8 summarizes the results and discusses future extens

this work.

2. The Hamming Associative Memory

In the following, we consider the binary autoassociative memory problem. In this case

given fundamental memory set is of the form , where each pattern is anN-bit

binary vector, i.e., , . The task is to design a system which associ

x1 x2 … xm, , ,{ } xi

xi 0 1,{ }N∈ i 1 2 … m, , ,=
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every fundamental pattern with itself. That is, when presented with as input, the system s

produce at the output. In addition, when presented with anoisy(corrupted) version of at the

input, the system should also produce  at the output.

Let the Hamming distance between two binary vectors and (of the same dimensio

denoted as .

The design phase of the Hamming memory involves simply storing all the patterns o

fundamental memory set. In the recall phase, for a given input memory key

retrieved pattern is obtained as follows

(1) Compute the Hamming distances ,

(2) Select the minimum such distance

(3) Output the fundamental memory  (closest match)

It can be shown that the Hamming memory has exponential capacity and very large

correction capability (Chou, 1989; Hassoun and Watta, 1996). In fact, the performance o

Hamming memory can be shown to be optimal in the sense of classical statistical p

recognition (Hamming, 1986).

This important fact—that no other memory can outperform the Hamming memor

indicates that the best place to start in formulating a high performance associative memory i

the Hamming memory itself. Unfortunately, there are several serious disadvantages of this m

First, the memory retrievals are slow because the memory key has to be compared to

fundamental memory. Second, each bit of the output pattern depends on each and every in

Hence, a direct hardware implementation of the Hamming memory would require

interconnectivity, and hence is impractical.

In the following sections, we develop and analyze an associative memory model w

localizes the Hamming distance computations, making it suitable for implementation on pa

and distributed processing systems.

xi

xi xi

xi

x y

d x y,( )

x 0 1,{ }N∈

dk d x xk,( )= k 1 2 … m, , ,=

dk* min d1 d2 … dm, , ,{ }=

y xk*

=
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3. The Decoupeld Hamming Memory

Notice that for the Hamming net formulated above, each output bit is a function of the e

input vector; i.e. for each . Substantial savings in hardwa

may be achieved by restricting the dependence of each output to a small fraction of all po

inputs, resulting in the computation oflocal Hamming distancemeasures.

The decoupled Hamming associative memorylocalizes the Hamming distance computatio

by partitioning the input vector into nonoverlapping modules or local windows, and perform

the Hamming memory operation on each module independently. To be precise, suppo

partition the N input variables of our memory intow local windows:

such that , , and , . To simplify notation

assume that each local window has the same number of variables, denotedn. In this case, we have

, , where is the total number of local windows. Figure

shows the structural difference between (a) the full Hamming memory and (b) the deco

Hamming memory.

Figure 1. Structure of (a) the full Hamming and (b) the decoupled Hamming memory.

Each window is a local Hamming memory and has its own local memory set, whic

obtained by partitioning each fundamental memory intow memory subvectors:

yi yi x1 x2 … xN, , ,( )= i 1 2 … N, , ,=

X x1 x2 … xN, , ,{ }=

X1 X2 … Xw, , ,{ } Xi X⊂ Xi∪ X= Xi Xj∩ ∅= i j≠

Xi n= i 1 2 … w, , ,= w N n⁄=

(a) (b)
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•
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•
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, where the ith subvector contains the components of

specified by the variables in theith module . In this case, we can associate with each module

own local memory set of the form .

The decoupled Hamming memory operates as follows: The memory key is partition

the same fashion as the fundamental memories: , and thew module Hamming

memories independently (and in parallel) operate on each of the subvectors ofx, computing the

Hamming distances , , and outputting the closest matching pattern

In the case of 2-dimensional patterns, there are many different topologies possible fo

layout of the local Hamming memories. For example, the local Hamming memories ma

arranged by row, by column, or in a checkerboard arrangement, as shown in Figure 2(a). He

binary image is covered with nonoverlapping windows in a checkerboard-t

layout. Each local Hamming memory then computes 256-bit Hamming distances as oppo

4096-bit Hamming distances for the entire image.

Figure 2. (a) Structure of local memories arranged as a grid of nonoverlapping
 windows in a  image. (b) A spurious memory.

One clear advantage of the decoupled Hamming memory over the full Hamming memo

retrieval speed. Since all modules can perform their computations in parallel, aw-fold speedup in

retrieval time can be achieved by dedicating a processor to each module. A disadvantage

stringent parallelism, though, is that the decoupled Hamming memory may retrieve a p

xk x 1( )
k …x w( )

k,[ ]= x i( )
k 0 1,{ }n∈ xk

Xi

x i( ) x i( )
1 … x i( )

m, ,{ }=

x

x x 1( ) …x w( ),[ ]=

d x i( ) x i( )
k,( ) k 1 2 … m, , ,=

64 64× 16 16×

(a) (b)

16 16×

64 bits

64
 b

its

windows

16 16× 64 64×
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which was not part of the memory set; i.e., spurious memories are possible. For image proc

applications, for example, the decoupled memory may converge to an image whic

predominantly one of the fundamental images, but contains scattered “chunks” of other im

as shown in Figure 2(b). The full Hamming network, on the other hand, never retrieves spu

memories.

4. The Two-Level Decoupled Hamming Associative Memory

To avoid the spurious memory problem of the previous section, a two-level structure c

used which consists of a decoupled Hamming memory along with a higher-level dec

network. The architecture of this memory (in the case of 2-dimensional memory pattern

shown in Figure 3(a). Here, each local Hamming memory or module computes the cl

matching pattern and sends the index of the best match pattern to the decision networ

decision network examines the indices of all the modules and computes a single

match index . Each memory module then outputs its portion of the fundamental memory

that is, each module outputs , . Since the decision network forces all mod

to output the same fundamental memory, the spurious memory problem of the previous sec

eliminated.

Figure 3. Structure of the two-level decoupled Hamming network. Numbers in (a)
represent the index of the closest matching pattern(s), and (b) shows the result
after the voting.

Xi

I i

I 1 I 2 … I w, , ,

I * x I *

x i( )
I *

i 1 2 … w, , ,=

Decision
Network

5
2  5  7

1

9

5
5

3  5
3  5  6 2  9 6

(a)

Decision
Network

5 5 5
5 5

5
5 5 5

(b)
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For example, in Figure 3(a), the window in the upper left hand corner of the image

matches image 5 in the memory set, while the window in the lower right hand corner best ma

images 1 and 6 (there is a tie in the Hamming distance). The decision network examines

votes from the local windows, determines that 5 is the most prevalent, and forces all windo

output its portion of image 5, as shown in (b).

There are many ways to design the decision network. In the simplest case, a majority r

used, in which is chosen to be the most frequent index among . Utilizing

emerging theory ofclassifier combination(Bishop, 1995) andsensor fusion (Ho, et al. 1994),

more sophisticated decision rules can be formulated. In this case, it may be desirable fo

module to send an ordered list of, say, the best 3 indices to the decision network

very noisy patterns, the second and third choices of each module may contain useful inform

which can be exploited with an appropriate combination scheme. In the analysis which fol

we assume that the decision network uses a simple majority rule.

Figure 4. Selective coverage of input image with (a) random placement and (b) strategic
placement of modules.

Note that the two-level decoupled Hamming memory can still function even if the en

image is not covered by local windows. For example, instead of covering the image complet

shown in Figure 2(a), we can cover, say of the image as shown in Figure 4(a). Here, the

memories are randomly scattered over the entire image. In the case of human face recogn

priori information can be exploited to place the covering modules for optimal performance

I * I 1 I 2 … I w, , ,

I i1
I i2

I i3
, ,

(b)(a)

2 3⁄
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example, Figure 4(b) shows a partial covering of the image in the expected nose and eyes

(center of image).

Assuming a majority rule for the decision network, and as with the single layer decou

Hamming network, it is easy to see that the two-level decoupled Hamming network reduces

full Hamming network in the case of a single module: . But unlike the single layer mo

the two-level decoupled Hamming memory with majority rule decision network also reduc

the full Hamming network in the other extreme case: . In this case, each pixel (modu

the image chooses those memory set images which have the same pixel value. The mem

image closest to the test image (in a Hamming distance sense) will necessarily get the mos

among all the modules, and hence the output of the two-level network will be the same as t

the Hamming network.

The most important performance measure of an associative memory is its capacity, o

many patterns it can reliably store (Hertz, Krough, and Palmer, 1991). Typically, statis

methods are used to derive capacity measures (Willshaw, Buneman, and Longuet-Higgins

Palm, 1980; Buckingham and Willshaw, 1992; Kawamura and Hirai, 1997).

The two-level decoupled Hamming network achieves the optimal performance of

Hamming memory for both the maximum and minimum number of modules. For interme

window sizes, the capacity of the two-level decoupled Hamming memory is not as large as th

Hamming memory. But even so, the two-level decoupled Hamming memory with interme

window size has a much higher capacity and much more error correction than most o

standard neural-based associative memories, such as the correlation-recorded Hopfield n

(Hopfield, 1982), and other recording algorithms for the same single-layer Hopfield-type n

structure (Hassoun, 1993, 1995).

Besides its performance advantages over standard neural net models, the two-level dec

Hamming net is ideal for parallel hardware implementation. Since the first level is modular

the computation can be done in parallel. Indeed, special purpose hardware consisting of a

w 1=

w N=
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array of digital signal processors already exists which can perform the required computa

efficiently [see, for example, Pulkki and Taneli, (1996)].

5. Capacity Analysis of the Two-Level Decoupled Hamming Memory

In this section, we derive the capacity of the two-level decoupled Hamming memory. Fi

5 shows a schematic of the fundamental memory set and an input memory key. In this ca

memory patterns are shown as 2-dimensional images; however, in our analysis, we still a

the memory elements consist of (one-dimensional) column vectors.

In the previous section, we discussed how the memory key and each of the fundam

memories are modularized inton-dimensional windows. One suchn-window is highlighted in the

memory key shown in Figure 5. The correspondingn-window is highlighted in each of the

fundamental memories, as well.

We assume that the memory set consists of uniformly random vectors. That is, each b

fundamental memory has a 50 percent chance of being 1 and 50 percent chance of bein

addition, it is assumed that the memory key is a corrupted version of one of the fundam

memories. In particular, the memory key is obtained by adding an amount of uniform ran

noise to one of the fundamental memories—called thetarget memory; i.e., with probability ,

each bit of the target image is flipped from its original value. Each of the remaining

fundamental memories will be called anon-targetmemory, orother memory (short for “other

than the target”).

ρ

ρ

m 1–
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Figure 5. The fundamental memory set and memory key for the 2-level decoupled
Hamming memory. With respect to the highlighted n-windows, the Hamming
distance between the memory key and the target window is denoted , the
Hamming distance between the memory key and the ith non-target memory window
in the memory set is denoted , and the Hamming distance between the target and
a non-target memory window is denoted .

The analysis will proceed by first computing the probability that the given local wind

votes for the target memory and the non-target memories, then the number of votes for the

memory and non-target memories will be computed, and finally, the capacity will be estimat

computing the probability that the target memory gets the highest number of votes.

5.1 Probability of Voting for the Target and a non-Target Memory

In reference to Figure 5, let us fix a window in the memory key (say, the highligh

window), and let us fix the corresponding window in each of the fundamental memorie

addition, of the non-target memories, let us focus our attention on a single one of them

the ith memory.

Let denote the Hamming distance between the highlighted local window of the mem

key and the corresponding window of the target memory, let denote the Hamming dis

• • •• • • • • •

Memory Set

Memory Key

dt

ds

di
N-bit image

Image 1 Target Image Imagei Imagem

n bits

dt

di

ds

m 1–

dt

di
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between the highlighted local window of the memory key and the corresponding window o

ith (non-target) image in the memory set, and let denote the Hamming distance betwe

highlighted local window of the target image and the corresponding window ofith image.

Clearly, since each of the fundamental memories is a uniform random binary vector, the

probability that  bits (where ) follows a binomial distribution of the form

(1)

where  is the number of combinations ofn items chosenj at a time, and is given by

Also, since the memory key is obtained by uniformly perturbing the target image with

amount of noise , then the probability that bits ( ) also follows a binom

distribution of the form

(2)

Another quantity that will be of interest is . That is, assuming

bits, we want to compute the probability that bits. The target image and theith memory

image are created completely independently of each other. If some of the bits of the target

are subsequently flipped (which is how the memory key is created), it is still independent o

ith memory image; hence has the same binomial distribution

:

(3)

ds

ds j= 0 j n≤ ≤

Prob ds j=( ) n
j 

  1
2
---

j 1
2
---

n j– n
j 

  1
2
---

n

= =

n
j 

 

n
j 

  n!
j! n j–( )!
-----------------------=

ρ dt k= 0 k n≤ ≤

Prob dt k=( ) n
k 

  ρk 1 ρ–( )n k–=

Prob di j= dt k=( ) dt k=

di j=

Prob di j= dt k=( )

Prob di j=( )

Prob di j= dt k=( ) Prob di j=( )

n
j 

 

2n
-------- n

j 
  1

2
---

n

= = =
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Note that each of the other non-target memories in the memory set follows the

distribution, since each of the fundamental memories was created independent and uni

random. Hence, Equation 3 holds for each non-target memoryi in the memory set.

Now for which memory will the highlighted window vote? Well, for each

the target memory gets a vote if and for all other memories (here, range

over all indices excluding the index of the target image). The probability that this oc

is given by

Substituting Equations 2 and 3 into the above Equation, we get

On the other hand, for each theith (non-target) memory gets a vote i

and and for all other memories in the memory set (here, rang

over all indices excluding indexi—for the ith memory—and the index of the targe

memory). Hence, the probability that theith image gets a vote  is given by

(4)

Substituting Equations 2 and 3 into the above Equation, we get

5.2 Number of Votes for the Target and non-Target Images

Thus far, we computed the probability that a single window will vote for the target and/or

k 0 1 … n, , ,{ }∈

dt k= di ′ k≥ m 1– i ′

1 … m, ,

Pt Pt n ρ m, ,( ) Prob dt k=( ) Prob di j= dt k=( )
j k=

n

∑
m 1–

k 0=

n

∑= =

Pt n ρ m, ,( ) n
k 

  ρk 1 ρ–( )n k– n
j 

  1
2
---

n

j k=

n

∑ 
 

m 1–

k 0=

n

∑=

k 0 1 … n, , ,{ }∈

dt k= di k≤ di ′ di≥ m 2– i ′

1 … m, ,

Pi Pi n ρ m, ,( )=

Pi Prob dt k=( ) Prob di j= dt k=( )
j 0=

k

∑ Prob di s= dt k=( )
s j=

n

∑
m 2–

 
 
 

k 0=

n

∑=

Pi n ρ m, ,( ) n
k 

  ρk 1 ρ–( )n k– n
j 

  1
2
---

n n
s 

  1
2
---

n

s j=

n

∑ 
 

m 2–

j 0=

k

∑
k 0=

n

∑=
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of the non-target memories. The decision network of the two-level decoupled Hamming me

counts up the votes for each of thew windows covering the memory key and then chooses

fundamental memory with the most votes. Hence, the question here is: What is the total nu

of votes received by the target and each of the non-target memories?

Let denote the total number of votes received by the target memory and the numb

votes received by theith non-target memory. Both and are random variables which follow

binomial distribution. The expected value and variance of the number of votes for the targ

given by

Similarly, the expected value and variance for the number of votes received by theith non-

target memory is given by

By the central limit theorem, and assuming a large number of windows, the probab

distribution of the random variables and approaches a normal distribution. In this cas

(approximate normal) density function for the number of votes for the target image is give

(5)

and the density function for the number of votes for theith non-target memory can be

approximated by

Nt Ni

Nt Ni

µt E Nt[ ] Pt
N
n
----= =

σt
2 V Nt[ ] Pt 1 Pt–( )N

n
----= =

µi E Ni[ ] Pi
N
n
----= =

σi
2 V Ni[ ] Pi 1 Pi–( )N

n
----= =

Nt Ni

f t

f t x( )
1

2πσt

----------------e

x µt–( )2–

2σt
2

------------------------

=

f i
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In the normal approximations of Equations (5) and (6), we assume , , andn is

held constant. Such approximations are useful in obtaining numerical values for  and

5.3 Estimation of Memory Capacity

In the previous subsection, we determined the expected number of votes for the target

and the expected number of votes for theith non-target image. Of course the two-level decoupl

Hamming memory retrieves the correct (target) image when is larger than forall of the

non-target memories in the fundamental memory set. That is, must be larger tha

and and . . . and , where we have assumed, without loss of generality, that the

memory is themth memory (last memory) in the fundamental memory set. To compute

probability of correct retrieval, then, we must determine the maximum of the “other” or non-ta

votes; hence, we define a quantity

(7)

It can be shown that the maximum of a collection of continuous random variables is a

random variable; furthermore, the cumulative distribution function (cdf) of the max rand

variable is given by the product of the individual cdf’s of the random variables being maxim

(Port, 1994).

In this case, we have random variables which follow the continuous (and approxim

probability density functions given in Equation 6. Suppose that

corresponding cumulative distribution functions are denoted by , respectiv

Then, since each of these  distributions are identical, we have

(8)

f i x( )
1

2πσ i

----------------e
2σi

2
------------------------

=

N ∞→ w ∞→

Nt Ni

Nt Ni

m 1– Nt N1

N2 Nm 1–

Ni
max

Ni
max max N1 N2 … Nm 1–, , ,{ }=

m 1–

f 1 f 2 … f m 1–, , ,

F1 F2 … Fm 1–, , ,

m 1–

Fmax x( ) F1 x( )F2 x( )…Fm 1– x( ) Fi x( )[ ]m 1–= =
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The probability density function of  can be obtained by differentiating Equation 8

(9)

Using the density function in Equation 9, the expected value of can be compute

follows:

(10)

Finally, the probability of correct retrieval is the probability that , i.e

 which is computed below

(11)

Using the standard normal distribution, Equation 11 can be recast as

(12)

And using the standard error function

Equation (12) can be written as

(13)

Equation 13 gives the probability that the target image will be retrieved as a functio

system dimensionN, local window sizen, noise level , and total number of stored patternsm.

Ni
max

f max x( )
xd

d
Fmax x( ) m 1–( ) Fi x( )[ ]m 2– f i x( )= =

Ni
max

Ni
max

E Ni
max[ ] x f max x( ) xd∫= =

Nt Ni
max>

Pcor Prob Nt Ni
max>( )=

Pcor n N ρ m, , ,( )
1

2πσt

----------------e

x µt–( )2–

2σt
2

------------------------

xd
Ni

max

∞
∫=

Pcor n N ρ m, , ,( )
1

2π
----------e

1
2
---z

2
–

zd
Ni

max µt–

σt
-----------------------

∞
∫=

erf x( ) 2

π
-------e z

2– zd
0

x

∫=

Pcor n N ρ m, , ,( )
1
2
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Numerical estimates of the capacity of the memory, then, can be determined by fixing v

for n, N, and , and computing Equation 13 for increasing values ofm.

6. Simulations

6.1 Expected Number of Votes

For the simulations of the two-level decoupled Hamming memory presented in this sect

is assumed that all memory patterns are 2-dimensional images and are generated randomly

uniform distribution. As with the above theoretical analysis, it is assumed that one of the me

images (the target image) is selected and corrupted with an amount of uniform random

( ). This corrupted image is used as the memory key, and it is desired that the sy

produce the target image at the output; i.e. retrieve the target image.

Figure 6(a) shows a comparison of the simulation and theoretical results for the exp

number of votes for the target , an arbitrary other image (other than target) , and

maximum among these other images . For these simulations, images

noise level is set at , and the local window size is . The top Figure shows

simulation results, and the bottom plot shows the corresponding theoretical distributions for

quantities, as given in Equations 5, 6, and 9. In (a), the image size is set at , wh

(b), the image size is .

m*

ρ

ρ

0 ρ 0.5≤ ≤

Nt Ni

Ni
max m 10 000,=

ρ 0.4= n 2 2×=

N 64 64×=

N 128 128×=
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Figure 6. Comparison between simulation and theory for the case of a
window size, input noise , memory size of , and an image size
of (a)  and (b) .

The simulation results were obtained as follows. The corrupted target memory (with

random noise) was input to the two-level Hamming memory, and the number of votes receiv

the target, a randomly chosen other (non-target) image, and the maximum among the non

images were recorded. This process was repeated 500 times. In each case, if the system r

the target image, the retrieval was considered a success; otherwise it was counted as a failu

probability of correct retrieval was simply the number of successes out of 500 trials (Watta, I

Artiklar, Subramanian, and Hassoun, 1999).

Clearly, the theoretical results provide a good model for the underlying distributions. N

that in both cases, there is sufficient separation in the distributions of and to succes

Ni Ni
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Nt

N 64 64×= Pcor
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Ni Nt
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perform the classification, and hence the probability of correct retrieval is unity: .

Figure 7. Comparison between simulation and theory for the case of a
window size and noise of and a memory size of , and an image
size of (a) , (b) , (c) , and (d) .

Figure 7 shows a case where there is overlap between the distributions. Here, the num

images in the memory set is , the input noise is , and the local window siz

. Figure 7(a) shows the results in the case of an image size of . Here

probability of correct retrieval is . Figure 7(b) shows the results for .

this case, the probability of correct retrieval is . Similarly, (c) and (d) show the res

for larger image sizes: , and . As expected, for a fixed numbe

memory patterns, as the image size increases, the separation between  and  increase

Pcor 1=

Ni
Ni

max

Nt

N 64 64×=

N 256 256×=

Ni Nt

N 72 72×=

N 128 128×=

Ni
Nt

Ni
max

Ni
Ni

max

Nt

Pcor
sim 0.56= Pcor

sim 0.71=

Pcor
sim 0.996= Pcor

sim 1.0=

f i f i
max

f t

f i f i
max

f t

f i f i
max

f t

f i

f i
max

f t

Ni
max

(a) (b)

(c) (d)

4 4×
ρ 0.4= m 1000=

64 64× 72 72× 128 128× 256 256×

m 1000= ρ 0.4=

n 4 4×= N 64 64×=

Pcor
sim 0.56= N 72 72×=

Pcor
sim 0.71=

N 128 128×= N 256 256×=

Ni Nt



A Two-Level Hamming Network 19

ions

erns

ber

lt, and

and

hole

les if

y in

small

ases,

ance.

own
6.2 Probability of Correct Retrieval

Fixing the system dimension at and the noise level at , the simulat

of the previous section were repeated for various values of the number of fundamental pattm

from to . Figure 8 shows the probability of correct retrieval vs. the num

of stored patterns for various local window sizes. The dashed line gives the simulation resu

the solid lines gives the theoretical values from Equation 13.

Figure 8. Probability of correct retrieval vs. number of stored
patterns m.

Note that when the window size does not divide the image size evenly (as in the

windows), then some overlap of neighboring windows is necessary to cover the w

image. In our simulations, we simply overlap the right-most modules and lower-most modu

needed. So to cover the  image requires a  array of the  windows.

As noted earlier, the two-level Hamming network reduces to the full Hamming memor

both of the extreme cases for the window size. This is illustrated in Figure 8, where the

neighborhood size gives very good performance. As the neighborhood size incre

though, the performance degrades. In particular, the window gives the worst perform

By increasing the window size above , the performance improves.

Figure 9 shows the probability of correct retrieval when only portion of the image, as sh

in Figure 4, is covered by local windows (here, , , andn is set at the worst
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possible value: ). The dashed line gives the simulation result, and the solid lines

the theoretical values. Using fewer windows amounts to a reduction in the dimension o

system and, as expected, the capacity decreases.

Figure 9. Probability of correct retrieval for different percent
coverages: 20%, 40%, 60%, 80%, and 100%.

6. 3 Capacity and Error Correction

The notion of capacity that will be used here is as follows: Assuming an input noise lev

, how many input patterns can be reliably stored? (Hertz et al, 1991; Kawamura and

1997). This measure of capacity is based on the error correction capability of the assoc

memory. That is, if some percentage of bits of the input pattern are corrupted, can the me

still retrieve the correct pattern?

Plots of the capacity of the two-level decoupled Hamming memory can be generat

follows. First, values forn, N, and are fixed. Then, starting with a small value form, is

computed using Equation 13. Initially, with such a smallm, is a near 1.0. Asm is slowly

increased, decreases in value. This process of decreasingm is continued until falls

below 0.99. In this case, the largest value ofmwhich gives is taken as the capacity

of the memory.

Figure 10 shows a plot of the capacity of the 2-level decoupled Hamming memory vs
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input noise level for various window sizes: , , , and . For the

experiments, the image size was fixed at . As expected, the capacity decreases

noise increases.

Figure 11 shows a plot of capacity vs. image size for various values of input noise:

0.35, 0.4, and 0.45. Again, the image size is fixed at .

Figure 10. Capacity vs. noise level for window sizes: , ,
, and .

Figure 11. Capacity vs. image size for various noise levels:
0.3, 0.35, 0.4, 0.45.

7. Correlated Memory Sets

The theoretical and simulation results given in the previous sections assumed that the p

to be stored consisted of random binary patterns. In practice, though, one usually wants to
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highly correlated patterns, such as images of faces, fingerprints, voice waveforms, etc. To t

performance of the two-level decoupled Hamming memory on such correlated memory se

constructed a database of 200 binary face images (Watta, Artiklar, Masadeh, and Hassoun

of size 82x115. Some samples of these face images are shown in Figure 12. In addition, Fig

also shows the face images corrupted with various amounts of uniform random noise. Notic

at 25 and 40% noise, the recognition problem becomes difficult for humans.

Figure 12. Samples of 82x115-dimensional face images in the 200-person
memory set. The original images are shown in the top row, and subsequent
rows the patterns corrupted with various amounts of uniform random noise.

Original

Image

10% Noise

25% Noise

40% Noise
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For comparison with results presented in the previous section, the face images were cr

to a size of  and  pixels, as shown in Figure 13.

Figure 13. Samples of 642x64 and 72x72-dimensional face images in the 200-
person memory set.

Table 1 shows the probability of correct retrieval over the 200-faces memory set using a

level of 40%. As with the binary images, the performance of the memory is high for small

large windows and deteriorates slightly for intermediate-sized windows. Note that for noise l

lower than 40%, the probability of correct retrieval is 100% for all window sizes and all 3 im

sizes.

Table 1. Probability of correct retrieval (in percent) on the 200-image
memory set of human faces.

The results in Table 1 were obtained in a similar fashion to the experiments on the ra

64x64

Images

72x72

Images

64 64× 72 72×

2x2 3x3 4x4 9x9 15x15 20x20 25x25

64x64 100 96 90 86 100 100 100

72x72 100 98 95 93 99 100 99

82x115 100 99 100 100 100 100 100

n

N
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images. Each of the 200 face images was corrupted with 40% noise and input to the two

Hamming memory. If the output of the Hamming memory was the original person, then the

was counted as a success; otherwise it was counted as a failure. The probability of correct re

was then the number of success over 200. The above process was repeated 25 times and th

averaged over those 25 times.

8. Summary

In this paper, we investigated the computational capabilities of a class of associative me

models called thetwo-level decoupled Hamming associative memory. This memory model is a

generalization of the Hamming associative memory, and allows for local distance measures

voting mechanism. We successfully formulated a theoretical analysis of this model w

characterized its memory capacity and error correction capability in the case of random me

patterns. In particular, an expression was derived for the probability of correct retrieval

function of pattern sizeN, window sizen, noise level , and number of patterns stored,m:

.

Simulation results were shown to be in close agreement with the theoretical results.

importantly, the capacity of the two-level decoupled Hamming memory was shown to

substantially larger than other single layer neural net memories, such as the Hopfield netw

fact, the two-level decoupled Hamming network can perform well even when the entire

image is not covered with local windows. The simulations results in Figure 8 showed a gr

decrease in performance as fewer and fewer local windows were used.

As expected, the two-level Hamming memory performs best when a single local windo

used: or when the maximal number of windows are used: (each pixel is a l

window). For intermediate window sizes, the capacity of the two-level memory is not as la

Interestingly, the worst performing local window size was found to be of size (for rand

input images).

ρ

Pcor Pcor n N ρ m, , ,( )=

w 1= w N=

4 4×
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In the case of correlated memory patterns, simulation results showed that the two

decoupled Hamming memory can store and correctly retrieve several hundred human

images, even in the presence large amounts of noise (40% bit errors).

The two-level Hamming network (and Hamming network) achieves associative memor

using a template matching approach, where the input image is compared to each of the pro

images. The sequential computation of comparing the input to each prototype is reminisc

the serial processing that humans do when asked to identify people whom they do not

(Chellappa, Wilson, and Sirohey, 1995). The training time for template matching is O

complexity, and simply consists of storing all the images in memory. In other algorithms, su

neural net-based approaches, the training time is extremely long, but the retrieval time can b

quick.

An obvious advantage of template-based schemes is that it is easy to add new individu

simply storing additional images or delete an individual by deleting the undesired proto

images. Another advantage is that template-based systems are not limited to producing

single output, but can produce an ordered list containing the best matching, sayk, individuals.

The main disadvantages of template-based methods were pointed out in Duda and

(1973): “. . . the complete set of samples must be stored, and must be searched each time

feature vector is to be classified.” Back in 1973 when this classic text was published, memor

processing speed were indeed serious constraints. The severity of the storage/speed dilem

diminished in recent years with the availability powerful and low cost PCs, and hence

template matching approach of the Hamming network warrants further consideration.

It is easy to see that there are applications, however, where the two-level Hamming me

requireslessstorage than neural net-based approaches. Consider the simplest type of asso

neural memory: a single layer Hopfield-type network (Hopfield, 1982 and 1984). Suppos

want to store a gray-level image of each of the 9,000 undergraduate students

University of Michigan-Dearborn. In this case, the two-level decoupled Hamming mem

512 512×
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requires about 2.5 GB of storage (of size character), whereas the Hopfield weight matrix re

the storage of about weights. Since weights are usually stored as floating point num

the Hopfield weight matrix would require about 136 GB of memory (assuming 2 bytes for

floating point number). Clearly, whenever , the two-level decoupled Hamming mem

requires less storage than a single layer neural associative neural memory (ANM). Of cour

single layer ANM is the simplest network architecture possible, and more sophisticated mult

associative neural memories usually require considerably more than  weights.

In future papers, we will extend the two-level Hamming network to the case of gray l

images and present additional results on the use of this memory for human face recog

problems.
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