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Abstract

In this paper we investigate a RAM-based 
associative memory that uses a weighted voting scheme. 
We adopt the testing protocols commonly used in the 
area of face recognition, and propose that the capacity of 
the system be measured by the results of an identification 
test (ability to properly recognize known information) 
and a watch-list test (ability to properly reject inputs that 
should not be matched with any of the memory set 
patterns). For the case of binary and random memory 
sets, we are able to derive theoretical expressions 
characterizing the performance of the weighted voting 
memory on both of these tests.

I. Introduction

The associative memory problem is stated as follows: 
We are given a fundamental memory set of desired 
associations: x1 y1,( ) x2 y2,( ) … xm ym,( ), , ,{ } , where 
xi X RN⊂∈  and yi Y RL⊂∈ , i 1 2 … m, , ,= . The task is 
to design a system which robustly stores the fundamental 
associations [3], such that

(1) When presented with xi  as input, the system should 
produce yi  at the output.

(2) When presented with a noisy (corrupted, distorted, 
or incomplete) version of xi  at the input, the system should 
also produce yi  at the output. 

(3) When presented with input x that is not sufficiently 
similar (application dependent) to any of the inputs in the 
memory set x1 x2 … xm, , ,{ } , the system should reject the 
input.

In Ikeda, Watta, Artiklar, and Hassoun, (2001), a voting-
based model of associative memory was proposed and 
analyzed. This voting memory was shown to have a number 

of advantages over other neural net-based associative 
memories. In this paper, we generalize the voting scheme by 
allowing for each local processor to cast not just a single 
vote, but a set of weighted votes. The resulting memory 
model will be referred to as the weighted voting memory. In 
this paper, a theoretical analysis of the weighted voting 
memory is given. 

The innovations of the voting memory developed here 
were inspired by the application of human face recognition 
[7, 8]. In this context, the fundamental memory set consists 
of a database of face images, where the input xi  is an image 
of the ith person, and the associated output yi  is the 
corresponding name of the person. The face recognition 
research community has developed protocols for assessing 
system performance [7, 8]. There are 2 main tests commonly 
used: identification test and watch list test. In both cases, we 
are given a database of face images. In the identification test, 
the system is tested with (new) images of known people. For 
a given input image, the task is to identify which database 
person it is. In this case, no rejection state is needed. The 
measure of merit here is the identification rate (IR), which is 
the probability that a given input image will be matched with 
the correct stored memory. 

In the watch list test, the system must have a rejection 
mechanism. Here, two test sets are required: TSG , which 
contains images of the known people, and TSN , which 
contains images of strangers (people not in the database). 
For the TSG  test set, there are two measures of merit: the 
detection and identification rate (DIR), which is the 
percentage of images that are correctly matched with the 
known individuals, and the false rejection rate (FRR), which 
is the percentage of images that are rejected by the system 
[8]. For the TSN  test set, there is only one measure of 
interest: the false acceptance rate (FAR), which gives the 
percentage of imposter images that are incorrectly matched 
with someone in the database. 
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Of course there is a trade-off between the detection and 
identification rate and the false acceptance rate. Typically, 
face recognition systems are designed with a tunable 
parameter or threshold T which allows one to control the 
trade-off between DIR and FAR. A receiver operating 
characteristic (ROC) curve can be constructed which shows 
how DIR and FAR vary as a function of T. 

We propose that researchers in neural associative 
memories adopt both the identification and watchlist testing 
methodology. In this paper, for memory sets consisting of 
random binary patterns, we are able to derive theoretical 
expressions for the retrieval rate, detection and identification 
rate, and the false acceptance rate for the proposed weighted 
voting model. 

II. The Voting Associative Memory

In the voting associative memory, the N-dimensional 
input x and each memory pattern xk  are partitioned into a 
collection of non-overlapping windows of size n. For 
notional simplicity, we will assume that n divides N, hence 
N n⁄  is an integer.

For the input (memory key), let x 1[ ] x 2[ ] … x N n⁄[ ], , ,  
denote the data in each window. That is, x i[ ]  is the portion 
of x contained in the ith window, etc. The database patterns 
are partitioned in the same way: xk 1[ ] xk 2[ ] … xk N n⁄[ ], , , , 
k 1 2 … m, , ,= . The partitioned database patterns can be 
stored in a RAM-type network [5], where the ith RAM holds 
all the database patterns associated with the ith window: 
x1 i[ ] x2 i[ ] … xM i[ ], , , . Figure 1 shows the architecture of a 
RAM network with 9 windows arranged in a 3 3×  structure. 

The voting network requires a distance measure to be 
computed locally at each window. Let d  be a distance 
measure between two n-dimensional vectors. Any suitable 
distance function can be used. For example, for binary 
memory patterns, the Hamming distance can be used; for 
real-valued patterns, the city-block distance can be used. In 
either case, the (local) distance between xk i[ ]  and x i[ ]  is 
given by:

d xk i[ ] x i[ ],( ) xk i[ ]j x i[ ]j–
j 1=

n

∑=

where xk i[ ]j  and x i[ ]j  denote the jth component of xk i[ ]  
and x i[ ] , respectively.

At each window, we compute a local distance
d1 … dm, ,  between the input key and all the memory 
patterns. The smallest distance is found, say dk , and then the 
local window casts a vote for memory pattern k . The 
decision network examines the votes of all the windows and 
chooses the memory pattern that received the most votes.

It is easy to introduce a rejection mechanism in the 

voting model. We simply use a threshold T  to indicate 
whether the number of votes received by the best matching 
pattern is sufficiently large. In the case that the number of 
votes received is less than T , then the input is rejected. 

Note that the network structure of the voting memory is 
similar to the WISARD system of Aleksander [5]. However, 
the present system is formulated to work with general types 
of data, not just binary data. In addition, the present system 
uses regular connections between the input and the RAM 
units and not random connections. Finally, the voting-based 
method of information retrieval is not present in the 
WISARD system.
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Figure 1. Structure of the voting associative memory.

It is interesting to note the 2-level structure of this 
associative memory network. The RAMs are low-level 
processors which operate on just a portion of the image. The 
decision network is a higher level computation which 
integrates and makes sense of the low-level information. Of 
course the problem of understanding the connection between 
low-level processing and high-level decision-making has 
long been an area of interest in both neurobiology and 
artificial intelligence [1, 2].

III. The Weighted Voting Memory

At the local level, the voting memory works in an all-or-
nothing fashion [4]. That is, the memory pattern that has the 
smallest (local) distance gets a vote and all the other memory 
patterns get nothing. It possible, though, that for a noisy 
memory key, the target pattern may not appear first on the 
list of best matching patterns. In this case, the worst happens: 
the window casts a vote for a non-target pattern and the 
target pattern gets nothing.
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The weighted voting model operates as follows. As 
before, we compute local distance measures at each window. 
But instead of just choosing the smallest distance and 
assigning a vote to the corresponding memory pattern, we 
sort all the distances and assign a rank to each. Let the 
memory set pattern that has the smallest (local) distance be 
assigned rank 1= . The pattern with the next smallest 
distance will have rank 2= , etc. The distance 
computations and ranking of memory set patterns are done 
independently by each local window. Hence the weighted 
voting model has the same parallel structure as the voting 
model shown in Figure 1. The only difference is that each 
window now requires a sorting operation and not a simple 
min select. After all the rankings have been computed, they 
are routed to the decision network. The decision network 
examines the rankings for each memory set pattern and then 
computes an appropriate output. 
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Figure 2. Example of a memory set with 3 patterns and a set 
of 3 3×  local classifiers. The rankings assigned to each 
memory pattern by the weighted voting model are shown. 

A simple example will help clarify the concepts. 
Suppose we have a memory set consisting of m 3=  
patterns and suppose the patterns are partitioned into 

N n⁄ 9=  windows (in a 3 3×  arrangement). Suppose that 
for a given memory key, the local distances are computed 
and sorted, and the resulting rankings are as shown in Figure 
2(a). For example, for the first window (highlighted in the 
Figure), the local distances d1 , d2 , and d3  were found to 
satisfy d3 d1 d2< < . Hence, for this window, memory set 
pattern #1 is assigned rank 2= , pattern #2 is assigned 
rank 3= , and pattern #3 is assigned rank 1= . The 
ranking from all the other windows are shown, as well. 

The voting network can be seen as a special case of 
weighted voting, where we only consider the rank 1=  
information, as shown in Figure 2(b). In the given example, 
though, each memory set pattern receives 3 votes, and hence 
the voting network cannot adequately discriminate among 
the memory set patterns. Clearly in this example, the second 
and third place rankings give additional information that 
would lead us to prefer memory set pattern #1 over the other 
two. 

Now how does the decision network of the weighted 
voting memory operate? First, let’s tally up the votes. Let 
Nxk

1( )  be the number of windows that were found to have rank 
1, Nxk

2( )  the number of windows that have rank 2, etc. In 
general, let Nxk

r( )  denote the number of windows that have 
rank r, r 1 2 … m, , ,= . We propose that for the weighted 
voting memory, the total number of votes Nxk

 assigned to 
pattern xk  be a weighted sum of the number of windows at 
each ranking Nxk

1( ) Nxk

2( ) … Nxk

m( ), , ,  that xk  received: 

Nxk
α1Nxk

1( ) α2Nxk

2( ) … αmNxk

m( )+ + += (1)

where the weights α1 α2 … αm, , ,  are used to adjust the 
relative importance of each ranking. Note that the simple 
voting memory can be seen as a special case of 
weighted voting with α1 1=  and all other weights set 
to zero: α2 α3 … αm 0= = = = . Although there are 
many possible ways of choosing proper weights, we propose 
that the weights be set as follows:

αr P ωt rank r=( )= , r 1 2 … m, , ,= (2)

That is, given the fact that we know that a memory pattern is 
(locally) ranked 1, α1  is the probability that it is, in fact, the 
target pattern. The target pattern does not always locally get 
ranked 1, though. And, given the fact that a memory pattern 
locally receives a rank of r, αr  is the probability that said 
memory pattern is the target. For notational convenience, let 
P r( ) P ωt rank r=( )= . Hence, the total number of votes 
received by pattern xk  is given by:

Nxk
P 1( )Nxk

1( )
P 2( )Nxk

2( )
… P m( )Nxk

m( )
+ + += (3)

For the special case of binary and random memory 
patterns, it is possible to derive theoretical expressions for 
P r( )  and Nxk

r( )  as a function of pattern dimension, window 
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size, and noise level. In fact, the derivation is given next (due 
to space limitations, we will omit the derivation of the 
weights P r( ) ). For more practical memory sets, the weights 
can be determined empirically using a training phase and an 
additional set of training data. 

IV. Assumptions for the Theoretical Analysis

Both the voting memory and the weighted voting 
memory can store real-valued (or integer-valued) and 
heteroassociative memory sets. For the theoretical analysis 
that follows, though, we assume that the memory set is 
binary-valued: xi 0 1,{ }N∈ , and random: each memory 
pattern is generated randomly and independently. We will 
assume that each component of the fundamental memory 
patterns has a 50% chance of being 1 and 50% chance of 
being 0. 

We start by considering the identification task. In this 
case, we test the system with noisy versions of the memory 
set patterns and see how well the system can retrieve the 
correct pattern. To create a suitable memory key, we proceed 
as follows. We first select one of the memory set patterns—
call it the target memory pattern, or simply target. The 
memory key is formed by corrupting the target memory 
pattern with an amount ρ  of uniform random noise; that is, 
with probability ρ , each component of the target pattern is 
flipped from its original value. Each of the remaining m 1–  
fundamental memories will be called non-target memory 
patterns.

We want to compute how many votes are received by 
each memory pattern. There are really only 2 cases to 
consider: the number of votes received by the target memory 
pattern: Nt , and the number of votes received by the ith non-
target memory pattern: Ni . In the weighted voting scheme, 
Equation 3 is used to compute Nt  and Ni . To use this 
equation, we must derive the expected number of windows 
at each rank r for the target pattern: Nt

r( ) , as well as the ith 
non-target pattern: Ni

r( ) . 

V. Distribution for Nt
r( )  and Ni

r( )

In [1], the authors showed (for the basic voting model) 
that it is possible to derive an expression for the probability 
Pt  that a local window votes for the target pattern and the 
probability Pi  that a local window votes for one of the non-
target patterns. Using a similar analysis, it is possible to 
derive, for the weighted voting memory, the probability that 
a local window will receive a rank of 1 2 … m, , ,  (the details 
for this analysis can be found in [6]). Let Pt

r( )  denote the 
probability that a single a single local window of the target 
image is ranked r. Similarly, let Pi

r( )  denote the probability 
that a single local window of the ith non-target memory 
pattern is ranked r.

For the target memory pattern, each window of the 
RAM network performs a Bernoulli experiment with 
probability Pt

r( )  of success (getting a vote) and probability 
1 Pt

r( )–  of failure (not getting a vote). If the experiment is 
repeated over all N n⁄  windows, the probability that there 
will be j successes follows a binomial distribution:

P Nt
r( ) j=( ) N n⁄

j 
  Pt

r( )[ ]
j

1 P– t
r( )[ ]

N
n
---- j–

= (4)

Similarly, for the non-target patterns, the distribution for 
the number of windows at each rank r is given by:

P Ni
r( ) j=( ) N n⁄

j 
  Pi

r( )[ ]
j

1 P– i
r( )[ ]

N
n
---- j–

= (5)

VI. Distribution for Nt , Ni , and Ni
max

Now we have computed the number of windows Nxk

r( )  
for each rank r and for each memory pattern xk . Actually, 
we computed Nxk

r( )  for the target pattern: Nt
r( )  and for the ith 

non-target pattern: Ni
r( ) . We can now compute the total 

number of votes received by each memory set pattern. The 
total number of votes received by the target pattern is given 
by:

Nt P r( )Nt
r( )

r 1=

m

∑= (6)

The probability distribution for Nt  can be computed by 
exhaustively enumerating all possible rankings of the N n⁄  
votes. For example, we can construct a table which lists all 
possible values for Nt

1( ) Nt
2( ) … Nt

m( ), , , . Each row of the 
table will occur with a certain probability (given by the 
product of the individual probabilities). The probability that 
Nt  has value, say z, can be obtained by summing all rows 
which have probability z. Hence, an analytic expression for 
the discrete probability density function Nt  can be written 
as:

P Nt z=( ) … P Nt
r( ) ir=( )

r 1=

m

∏ C1 C2××
im 0=

N n⁄

∑
i1 0=

N n⁄

∑= (7)

The term C1  is used to enforce the constraint that the sum of 
all the Nt

r( )  values must be the total number of windows: 

C1 δ ir

r 1=

m

∑
N
n
----–

 
 
 

= (8)

where δ  is the delta function: δ s( ) 1=  if s 0=  and 
δ s( ) 0=  otherwise. The term C2  is used to ensure that we 
sum only those rows that have probability z.
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C2 δ P r( )ir

r 1=

m

∑ z–
 
 
 

=
(9)

In general, for the weighted voting memory, the weights 
are non-negative real numbers. Hence the number of votes 
Nt  is not an integer (nor is z in Equation 7). However, there 
are only a finite number of possibilities for z, and hence Nt  
can be described by the discrete distribution given in (7). 

Similarly, the discrete probability density function of Ni  
can be written as

P Ni z=( ) … P Ni
r( ) ir=( )

r 1=

m

∏ C1 C2××
im 0=

N n⁄

∑
i1 0=

N n⁄

∑=

Here, the constraints C1  and C2  are the same as those given 
in Equations 8 and 9, respectively. 

We now have probability density functions for Nt , the 
number of votes received by the target pattern, and Ni , the 
number of votes received by the ith non-target pattern. The 
system will retrieve the correct pattern when Nt  is larger 
than Ni  for each and every one of the m 1–  non-target 
memory patterns. Of these m 1–  non-target patterns, we 
need only concern ourselves with the one that received the 
maximum number of votes.

Let Ni
max  be a random variable that gives the maximum 

of the m 1–  random variables Ni{ } . The distribution for 

Ni
max  can be derived by accounting for all possible ties 

among the weighted votes received by the non-target 
patterns. For example, suppose the maximum number of 
votes among the m 1–  non-target patterns is j. The 
probability that a single non-target memory set pattern 
received j votes (and all the other m 2–  non-target patterns 

received less) is Prob Ni j=( )Prob Ni j<( )m 2– . The 
probability that precisely k of the non-target patterns achieve 
j number of votes (a k-way tie at the top) is given by: 

m 1–
k 

 Prob Ni j=( )kProb Ni j<( )m 1– k– . To account for 

all possible ties, we sum over all possible values of k:

P Ni
max z=( ) m 1–

k 
  P Ni z=( )[ ]

k
P Ni z<( )[ ]m 1– k–

k 1=

m 1–

∑=

VII. Identification Test
For the identification problem, the probability of correct 

retrieval is simply the probability that the number of votes 
received by the target image exceeds that received by the 
maximum non-target image:

Pid Prob Nt Ni
max>( )= (10)

Since Nt  is an integer that varies from 0 to N n⁄ , we 
have:

P Nt Ni
max>( ) P Nt Ni

max> Nt j=( )P Nt j=( )
j 1=

N n⁄

∑=

Assuming Nt  is independent of Ni
max , the distribution 

for the probability of correct retrieval (identification rate) 
can be written as:

Pid P Nt Ni
max>( ) P Nt j=( ) P Ni

max p=( )
p 0=

j 1–

∑
j 1=

N n⁄

∑= = (11)

VIII. Watch List Test

Here, we use a threshold and reject patterns that do not 
get at least T votes. The detection and identification rate 
(DIR) is the probability

Pdir Prob Nt Ni
max Nt T>∩>( )= (12)

To compute Pdir , we use Equation 12, but now the 
smallest allowable value for Nt  is T:

Pdir n N ρ m, , ,( ) P Nt j=( ) P Ni
max p=( )

p 0=

j 1–

∑
j T=

N n⁄

∑= (13)

For the false positive test, the memory key is created by 
generating a completely random input. Here there is no 
target pattern in the memory set, and all m memories are 
non-target patterns. It is possible to derive the probability 
Pi ′

r( )  that the i′ th (non-target) memory has rank r [6]. 
At a single window, Pi ′

r( )  gives the probability that the 
i′ th non-target memory pattern will be ranked r, and 
1 Pt

r( )–  gives the probability that it will not be ranked r. If 
the experiment is repeated over all N n⁄  windows, the 
probability that there will be j successes follows a binomial 
distribution:

P Ni ′
r( ) j=( ) N n⁄

j 
  Pi ′

r( )[ ]
j

1 P– i ′
r( )[ ]

N
n
---- j–

= (14)

The total number of votes received by the i′ th non-
target memory pattern is:

Ni ′ P r( )Ni ′
r( )

i 1=

m

∑= (15)

Similar to Equations 7 and 8, the discrete form of the 
probability density functions for Ni ′  can be computed by 
going through all possible combinations of r:
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P Ni ′ z=( ) … P Ni ′
r( ) ir=( )

r 1=

m

∏ C1 C2××
im 0=

N n⁄

∑
i1 0=

N n⁄

∑=
(16)

Let Ni ′
max  denote the maximum among Ni ′{ } . The 

distribution for Ni ′
max  is given by:

P Ni ′
max j=( ) m

k 
  P Ni ′ j=( )[ ]

k
P Ni ′ j<( )[ ]m k–

k 1=

m

∑= (17)

The probability of false acceptance is the probability 
that one of the memory patterns receives more than T votes:

Pfar P Ni ′
max T≥( )= (18)

Using the distribution in (17), this can be computed as: 

Pfar n N ρ m, , ,( ) P Ni ′
max j=( )

j T=

N n⁄

∑= (19)

By varying the threshold T, we can achieve different 
values of Pdir  and Pfar . An ROC curve can be plotted to 
show the trade-off between the two as a function of the 
threshold.

IX. Conclusions

The goal of associative memory research is to design 
systems that can reliably store and retrieve information. For 
reliable performance, associative memory systems must 
have a rejection mechanism whereby very noisy or unwanted 
input patterns can be rejected by the system. Consider the 
implication of not having such a rejection mechanism when 
an associative memory is used in the context of human face 
recognition. In this case, images of strangers (people not in 
the fundamental memory set) will be (mis)matched with one 
of the known people. Such a system—even if it was able to 
achieve 100% identification rates on images of known 
people—is useless because its output could not be trusted. 

In this paper, we proposed a way to study the capacity of 
associative memory systems that have a rejection capability. 
A high performance associative memory must maximize the 
identification rate Pdir  and, simultaneously, minimize the 
false acceptance rate Pfar . A flexible design would allow the 
user to adjust system parameters (for example, a threshold) 
to achieve the desired balance of Pdir  and Pfar . 

The weighted voting associative memory model 
proposed in this paper has the following desirable properties:

•Can operate in autoassociative or heteroassociative 
mode

•Can store binary, integer, or real-valued data (though 
the theoretical analysis here pertains only to binary and 

random patterns).

•Has a rejection mechanism and a tunable threshold T
which allows the user to adjust Pdir  and Pfar . 

•Never produces a spurious memory.

In this paper, we have extended the analysis of the 
voting associative memory proposed in Ikeda et al, 2001. In 
addition, we have proposed a generalization of the voting 
memory where rather than cast a single vote for the best 
matching memory set pattern, each window casts a set of 
weighted votes. For the case of random and binary memory 
set patterns, we were able to derive expressions for the 
retrieval rate, detection and identification rate, and false 
acceptance rate for both the voting memory and the weighted 
voting 
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