
A Weighted Voting Model of Associative Memory: Theoretical Analysis
Xiaoyan Mu

Department of Electrical and Computer Engineering
Rose-Hullman Institute of Technology

Terre Haute, IN 47803
mu@Rose-Hulman.edu

Paul Watta
Dept. Electrical and Computer Engineering

University of Michigan-Dearborn
Dearborn, MI 48128
watta@umich.edu

Mohamad H. Hassoun
Dept. Electrical and Computer Engineering

Wayne State University
Detroit, MI 48202

hassoun@eng.wayne.edu
Abstract

In this paper we investigate a RAM-based
associative memory that uses a weighted voting scheme.
We adopt the testing protocols commonly used in the
area of face recognition, and propose that the capacity of
the system be measured by the results of an identification
test (ability to properly recognize known information)
and a watch-list test (ability to properly reject inputs that
should not be matched with any of the memory set
patterns). For the case of binary and random memory
sets, we are able to derive theoretical expressions
characterizing the performance of the weighted voting
memory on both of these tests.

I. Introduction

The associative memory problem is stated as follows:
We are given a fundamental memory set of desired
associations: x1 y1,() x2 y2,() … xm ym,(), , ,{ } , where
xi X RN⊂∈ and yi Y RL⊂∈ , i 1 2 … m, , ,= . The task is
to design a system which robustly stores the fundamental
associations [3], such that

(1) When presented with xi as input, the system should
produce yi at the output.

(2) When presented with a noisy (corrupted, distorted,
or incomplete) version of xi at the input, the system should
also produce yi at the output.

(3) When presented with input x that is not sufficiently
similar (application dependent) to any of the inputs in the
memory set x1 x2 … xm, , ,{ } , the system should reject the
input.

In Ikeda, Watta, Artiklar, and Hassoun, (2001), a voting-
based model of associative memory was proposed and
analyzed. This voting memory was shown to have a number

of advantages over other neural net-based associative
memories. In this paper, we generalize the voting scheme by
allowing for each local processor to cast not just a single
vote, but a set of weighted votes. The resulting memory
model will be referred to as the weighted voting memory. In
this paper, a theoretical analysis of the weighted voting
memory is given.

The innovations of the voting memory developed here
were inspired by the application of human face recognition
[7, 8]. In this context, the fundamental memory set consists
of a database of face images, where the input xi is an image
of the ith person, and the associated output yi is the
corresponding name of the person. The face recognition
research community has developed protocols for assessing
system performance [7, 8]. There are 2 main tests commonly
used: identification test and watch list test. In both cases, we
are given a database of face images. In the identification test,
the system is tested with (new) images of known people. For
a given input image, the task is to identify which database
person it is. In this case, no rejection state is needed. The
measure of merit here is the identification rate (IR), which is
the probability that a given input image will be matched with
the correct stored memory.

In the watch list test, the system must have a rejection
mechanism. Here, two test sets are required: TSG , which
contains images of the known people, and TSN , which
contains images of strangers (people not in the database).
For the TSG test set, there are two measures of merit: the
detection and identification rate (DIR), which is the
percentage of images that are correctly matched with the
known individuals, and the false rejection rate (FRR), which
is the percentage of images that are rejected by the system
[8]. For the TSN test set, there is only one measure of
interest: the false acceptance rate (FAR), which gives the
percentage of imposter images that are incorrectly matched
with someone in the database.
1

Of course there is a trade-off between the detection and
identification rate and the false acceptance rate. Typically,
face recognition systems are designed with a tunable
parameter or threshold T which allows one to control the
trade-off between DIR and FAR. A receiver operating
characteristic (ROC) curve can be constructed which shows
how DIR and FAR vary as a function of T.

We propose that researchers in neural associative
memories adopt both the identification and watchlist testing
methodology. In this paper, for memory sets consisting of
random binary patterns, we are able to derive theoretical
expressions for the retrieval rate, detection and identification
rate, and the false acceptance rate for the proposed weighted
voting model.

II. The Voting Associative Memory

In the voting associative memory, the N-dimensional
input x and each memory pattern xk are partitioned into a
collection of non-overlapping windows of size n. For
notional simplicity, we will assume that n divides N, hence
N n⁄ is an integer.

For the input (memory key), let x 1[] x 2[] … x N n⁄[], , ,
denote the data in each window. That is, x i[] is the portion
of x contained in the ith window, etc. The database patterns
are partitioned in the same way: xk 1[] xk 2[] … xk N n⁄[], , , ,
k 1 2 … m, , ,= . The partitioned database patterns can be
stored in a RAM-type network [5], where the ith RAM holds
all the database patterns associated with the ith window:
x1 i[] x2 i[] … xM i[], , , . Figure 1 shows the architecture of a
RAM network with 9 windows arranged in a 3 3× structure.

The voting network requires a distance measure to be
computed locally at each window. Let d be a distance
measure between two n-dimensional vectors. Any suitable
distance function can be used. For example, for binary
memory patterns, the Hamming distance can be used; for
real-valued patterns, the city-block distance can be used. In
either case, the (local) distance between xk i[] and x i[] is
given by:

d xk i[] x i[],() xk i[]j x i[]j–
j 1=

n

∑=

where xk i[]j and x i[]j denote the jth component of xk i[]
and x i[] , respectively.

At each window, we compute a local distance
d1 … dm, , between the input key and all the memory
patterns. The smallest distance is found, say dk , and then the
local window casts a vote for memory pattern k . The
decision network examines the votes of all the windows and
chooses the memory pattern that received the most votes.

It is easy to introduce a rejection mechanism in the

voting model. We simply use a threshold T to indicate
whether the number of votes received by the best matching
pattern is sufficiently large. In the case that the number of
votes received is less than T , then the input is rejected.

Note that the network structure of the voting memory is
similar to the WISARD system of Aleksander [5]. However,
the present system is formulated to work with general types
of data, not just binary data. In addition, the present system
uses regular connections between the input and the RAM
units and not random connections. Finally, the voting-based
method of information retrieval is not present in the
WISARD system.

1

Input Memory Key: x

4

2

5

3

6

Retrieved pattern y

7 8 9

Decision Network

RAM
Dist Min

RAM
Dist Min

RAM
Dist Min

RAM
Dist Min

RAM
Dist Min

RAM
Dist Min

RAM
Dist Min

RAM
Dist Min

RAM
Dist Min

Figure 1. Structure of the voting associative memory.

It is interesting to note the 2-level structure of this
associative memory network. The RAMs are low-level
processors which operate on just a portion of the image. The
decision network is a higher level computation which
integrates and makes sense of the low-level information. Of
course the problem of understanding the connection between
low-level processing and high-level decision-making has
long been an area of interest in both neurobiology and
artificial intelligence [1, 2].

III. The Weighted Voting Memory

At the local level, the voting memory works in an all-or-
nothing fashion [4]. That is, the memory pattern that has the
smallest (local) distance gets a vote and all the other memory
patterns get nothing. It possible, though, that for a noisy
memory key, the target pattern may not appear first on the
list of best matching patterns. In this case, the worst happens:
the window casts a vote for a non-target pattern and the
target pattern gets nothing.
2

The weighted voting model operates as follows. As
before, we compute local distance measures at each window.
But instead of just choosing the smallest distance and
assigning a vote to the corresponding memory pattern, we
sort all the distances and assign a rank to each. Let the
memory set pattern that has the smallest (local) distance be
assigned rank 1= . The pattern with the next smallest
distance will have rank 2= , etc. The distance
computations and ranking of memory set patterns are done
independently by each local window. Hence the weighted
voting model has the same parallel structure as the voting
model shown in Figure 1. The only difference is that each
window now requires a sorting operation and not a simple
min select. After all the rankings have been computed, they
are routed to the decision network. The decision network
examines the rankings for each memory set pattern and then
computes an appropriate output.

2 1 2

2 1 1

2 3 2

3 2 1

1 2 3

3 1 3

1 3 3

3 3 2

1 2 1

Memory
Pattern

1

2

3

0 1 0

0 1 1

0 0 0

0 0 1

1 0 0

0 1 0

1 0 0

0 0 0

1 0 1

(a) (b)

Weighted Voting Voting

Figure 2. Example of a memory set with 3 patterns and a set
of 3 3× local classifiers. The rankings assigned to each
memory pattern by the weighted voting model are shown.

A simple example will help clarify the concepts.
Suppose we have a memory set consisting of m 3=
patterns and suppose the patterns are partitioned into

N n⁄ 9= windows (in a 3 3× arrangement). Suppose that
for a given memory key, the local distances are computed
and sorted, and the resulting rankings are as shown in Figure
2(a). For example, for the first window (highlighted in the
Figure), the local distances d1 , d2 , and d3 were found to
satisfy d3 d1 d2< < . Hence, for this window, memory set
pattern #1 is assigned rank 2= , pattern #2 is assigned
rank 3= , and pattern #3 is assigned rank 1= . The
ranking from all the other windows are shown, as well.

The voting network can be seen as a special case of
weighted voting, where we only consider the rank 1=
information, as shown in Figure 2(b). In the given example,
though, each memory set pattern receives 3 votes, and hence
the voting network cannot adequately discriminate among
the memory set patterns. Clearly in this example, the second
and third place rankings give additional information that
would lead us to prefer memory set pattern #1 over the other
two.

Now how does the decision network of the weighted
voting memory operate? First, let’s tally up the votes. Let
Nxk

1() be the number of windows that were found to have rank
1, Nxk

2() the number of windows that have rank 2, etc. In
general, let Nxk

r() denote the number of windows that have
rank r, r 1 2 … m, , ,= . We propose that for the weighted
voting memory, the total number of votes Nxk

 assigned to
pattern xk be a weighted sum of the number of windows at
each ranking Nxk

1() Nxk

2() … Nxk

m(), , , that xk received:

Nxk
α1Nxk

1() α2Nxk

2() … αmNxk

m()+ + += (1)

where the weights α1 α2 … αm, , , are used to adjust the
relative importance of each ranking. Note that the simple
voting memory can be seen as a special case of
weighted voting with α1 1= and all other weights set
to zero: α2 α3 … αm 0= = = = . Although there are
many possible ways of choosing proper weights, we propose
that the weights be set as follows:

αr P ωt rank r=()= , r 1 2 … m, , ,= (2)

That is, given the fact that we know that a memory pattern is
(locally) ranked 1, α1 is the probability that it is, in fact, the
target pattern. The target pattern does not always locally get
ranked 1, though. And, given the fact that a memory pattern
locally receives a rank of r, αr is the probability that said
memory pattern is the target. For notational convenience, let
P r() P ωt rank r=()= . Hence, the total number of votes
received by pattern xk is given by:

Nxk
P 1()Nxk

1()
P 2()Nxk

2()
… P m()Nxk

m()
+ + += (3)

For the special case of binary and random memory
patterns, it is possible to derive theoretical expressions for
P r() and Nxk

r() as a function of pattern dimension, window
3

size, and noise level. In fact, the derivation is given next (due
to space limitations, we will omit the derivation of the
weights P r()). For more practical memory sets, the weights
can be determined empirically using a training phase and an
additional set of training data.

IV. Assumptions for the Theoretical Analysis

Both the voting memory and the weighted voting
memory can store real-valued (or integer-valued) and
heteroassociative memory sets. For the theoretical analysis
that follows, though, we assume that the memory set is
binary-valued: xi 0 1,{ }N∈ , and random: each memory
pattern is generated randomly and independently. We will
assume that each component of the fundamental memory
patterns has a 50% chance of being 1 and 50% chance of
being 0.

We start by considering the identification task. In this
case, we test the system with noisy versions of the memory
set patterns and see how well the system can retrieve the
correct pattern. To create a suitable memory key, we proceed
as follows. We first select one of the memory set patterns—
call it the target memory pattern, or simply target. The
memory key is formed by corrupting the target memory
pattern with an amount ρ of uniform random noise; that is,
with probability ρ , each component of the target pattern is
flipped from its original value. Each of the remaining m 1–
fundamental memories will be called non-target memory
patterns.

We want to compute how many votes are received by
each memory pattern. There are really only 2 cases to
consider: the number of votes received by the target memory
pattern: Nt , and the number of votes received by the ith non-
target memory pattern: Ni . In the weighted voting scheme,
Equation 3 is used to compute Nt and Ni . To use this
equation, we must derive the expected number of windows
at each rank r for the target pattern: Nt

r() , as well as the ith
non-target pattern: Ni

r() .

V. Distribution for Nt
r() and Ni

r()

In [1], the authors showed (for the basic voting model)
that it is possible to derive an expression for the probability
Pt that a local window votes for the target pattern and the
probability Pi that a local window votes for one of the non-
target patterns. Using a similar analysis, it is possible to
derive, for the weighted voting memory, the probability that
a local window will receive a rank of 1 2 … m, , , (the details
for this analysis can be found in [6]). Let Pt

r() denote the
probability that a single a single local window of the target
image is ranked r. Similarly, let Pi

r() denote the probability
that a single local window of the ith non-target memory
pattern is ranked r.

For the target memory pattern, each window of the
RAM network performs a Bernoulli experiment with
probability Pt

r() of success (getting a vote) and probability
1 Pt

r()– of failure (not getting a vote). If the experiment is
repeated over all N n⁄ windows, the probability that there
will be j successes follows a binomial distribution:

P Nt
r() j=() N n⁄

j 
  Pt

r()[]
j

1 P– t
r()[]

N
n
---- j–

= (4)

Similarly, for the non-target patterns, the distribution for
the number of windows at each rank r is given by:

P Ni
r() j=() N n⁄

j 
  Pi

r()[]
j

1 P– i
r()[]

N
n
---- j–

= (5)

VI. Distribution for Nt , Ni , and Ni
max

Now we have computed the number of windows Nxk

r()
for each rank r and for each memory pattern xk . Actually,
we computed Nxk

r() for the target pattern: Nt
r() and for the ith

non-target pattern: Ni
r() . We can now compute the total

number of votes received by each memory set pattern. The
total number of votes received by the target pattern is given
by:

Nt P r()Nt
r()

r 1=

m

∑= (6)

The probability distribution for Nt can be computed by
exhaustively enumerating all possible rankings of the N n⁄
votes. For example, we can construct a table which lists all
possible values for Nt

1() Nt
2() … Nt

m(), , , . Each row of the
table will occur with a certain probability (given by the
product of the individual probabilities). The probability that
Nt has value, say z, can be obtained by summing all rows
which have probability z. Hence, an analytic expression for
the discrete probability density function Nt can be written
as:

P Nt z=() … P Nt
r() ir=()

r 1=

m

∏ C1 C2××
im 0=

N n⁄

∑
i1 0=

N n⁄

∑= (7)

The term C1 is used to enforce the constraint that the sum of
all the Nt

r() values must be the total number of windows:

C1 δ ir

r 1=

m

∑
N
n
----–

 
 
 

= (8)

where δ is the delta function: δ s() 1= if s 0= and
δ s() 0= otherwise. The term C2 is used to ensure that we
sum only those rows that have probability z.
4

C2 δ P r()ir

r 1=

m

∑ z–
 
 
 

=
(9)

In general, for the weighted voting memory, the weights
are non-negative real numbers. Hence the number of votes
Nt is not an integer (nor is z in Equation 7). However, there
are only a finite number of possibilities for z, and hence Nt
can be described by the discrete distribution given in (7).

Similarly, the discrete probability density function of Ni
can be written as

P Ni z=() … P Ni
r() ir=()

r 1=

m

∏ C1 C2××
im 0=

N n⁄

∑
i1 0=

N n⁄

∑=

Here, the constraints C1 and C2 are the same as those given
in Equations 8 and 9, respectively.

We now have probability density functions for Nt , the
number of votes received by the target pattern, and Ni , the
number of votes received by the ith non-target pattern. The
system will retrieve the correct pattern when Nt is larger
than Ni for each and every one of the m 1– non-target
memory patterns. Of these m 1– non-target patterns, we
need only concern ourselves with the one that received the
maximum number of votes.

Let Ni
max be a random variable that gives the maximum

of the m 1– random variables Ni{ } . The distribution for

Ni
max can be derived by accounting for all possible ties

among the weighted votes received by the non-target
patterns. For example, suppose the maximum number of
votes among the m 1– non-target patterns is j. The
probability that a single non-target memory set pattern
received j votes (and all the other m 2– non-target patterns

received less) is Prob Ni j=()Prob Ni j<()m 2– . The
probability that precisely k of the non-target patterns achieve
j number of votes (a k-way tie at the top) is given by:

m 1–
k 

 Prob Ni j=()kProb Ni j<()m 1– k– . To account for

all possible ties, we sum over all possible values of k:

P Ni
max z=() m 1–

k 
  P Ni z=()[]

k
P Ni z<()[]m 1– k–

k 1=

m 1–

∑=

VII. Identification Test
For the identification problem, the probability of correct

retrieval is simply the probability that the number of votes
received by the target image exceeds that received by the
maximum non-target image:

Pid Prob Nt Ni
max>()= (10)

Since Nt is an integer that varies from 0 to N n⁄ , we
have:

P Nt Ni
max>() P Nt Ni

max> Nt j=()P Nt j=()
j 1=

N n⁄

∑=

Assuming Nt is independent of Ni
max , the distribution

for the probability of correct retrieval (identification rate)
can be written as:

Pid P Nt Ni
max>() P Nt j=() P Ni

max p=()
p 0=

j 1–

∑
j 1=

N n⁄

∑= = (11)

VIII. Watch List Test

Here, we use a threshold and reject patterns that do not
get at least T votes. The detection and identification rate
(DIR) is the probability

Pdir Prob Nt Ni
max Nt T>∩>()= (12)

To compute Pdir , we use Equation 12, but now the
smallest allowable value for Nt is T:

Pdir n N ρ m, , ,() P Nt j=() P Ni
max p=()

p 0=

j 1–

∑
j T=

N n⁄

∑= (13)

For the false positive test, the memory key is created by
generating a completely random input. Here there is no
target pattern in the memory set, and all m memories are
non-target patterns. It is possible to derive the probability
Pi ′

r() that the i′ th (non-target) memory has rank r [6].
At a single window, Pi ′

r() gives the probability that the
i′ th non-target memory pattern will be ranked r, and
1 Pt

r()– gives the probability that it will not be ranked r. If
the experiment is repeated over all N n⁄ windows, the
probability that there will be j successes follows a binomial
distribution:

P Ni ′
r() j=() N n⁄

j 
  Pi ′

r()[]
j

1 P– i ′
r()[]

N
n
---- j–

= (14)

The total number of votes received by the i′ th non-
target memory pattern is:

Ni ′ P r()Ni ′
r()

i 1=

m

∑= (15)

Similar to Equations 7 and 8, the discrete form of the
probability density functions for Ni ′ can be computed by
going through all possible combinations of r:
5

P Ni ′ z=() … P Ni ′
r() ir=()

r 1=

m

∏ C1 C2××
im 0=

N n⁄

∑
i1 0=

N n⁄

∑=
(16)

Let Ni ′
max denote the maximum among Ni ′{ } . The

distribution for Ni ′
max is given by:

P Ni ′
max j=() m

k 
  P Ni ′ j=()[]

k
P Ni ′ j<()[]m k–

k 1=

m

∑= (17)

The probability of false acceptance is the probability
that one of the memory patterns receives more than T votes:

Pfar P Ni ′
max T≥()= (18)

Using the distribution in (17), this can be computed as:

Pfar n N ρ m, , ,() P Ni ′
max j=()

j T=

N n⁄

∑= (19)

By varying the threshold T, we can achieve different
values of Pdir and Pfar . An ROC curve can be plotted to
show the trade-off between the two as a function of the
threshold.

IX. Conclusions

The goal of associative memory research is to design
systems that can reliably store and retrieve information. For
reliable performance, associative memory systems must
have a rejection mechanism whereby very noisy or unwanted
input patterns can be rejected by the system. Consider the
implication of not having such a rejection mechanism when
an associative memory is used in the context of human face
recognition. In this case, images of strangers (people not in
the fundamental memory set) will be (mis)matched with one
of the known people. Such a system—even if it was able to
achieve 100% identification rates on images of known
people—is useless because its output could not be trusted.

In this paper, we proposed a way to study the capacity of
associative memory systems that have a rejection capability.
A high performance associative memory must maximize the
identification rate Pdir and, simultaneously, minimize the
false acceptance rate Pfar . A flexible design would allow the
user to adjust system parameters (for example, a threshold)
to achieve the desired balance of Pdir and Pfar .

The weighted voting associative memory model
proposed in this paper has the following desirable properties:

•Can operate in autoassociative or heteroassociative
mode

•Can store binary, integer, or real-valued data (though
the theoretical analysis here pertains only to binary and

random patterns).

•Has a rejection mechanism and a tunable threshold T
which allows the user to adjust Pdir and Pfar .

•Never produces a spurious memory.

In this paper, we have extended the analysis of the
voting associative memory proposed in Ikeda et al, 2001. In
addition, we have proposed a generalization of the voting
memory where rather than cast a single vote for the best
matching memory set pattern, each window casts a set of
weighted votes. For the case of random and binary memory
set patterns, we were able to derive expressions for the
retrieval rate, detection and identification rate, and false
acceptance rate for both the voting memory and the weighted
voting

References

[1] Altmann, C., Bülthoff, H., and Kourtzi, Z. (2003).
“Perceptual Organization of Local Elements into Global
Shapes in the Human Visual Cortex, Current Biology, 13,
342-349.

[2] Burton, A., Bruce, V., Hancock, P., (1999). “From Pixels
to People: A Model of Familiar Face Recognition,”
Cognitive Science, 23(1), 1-31.

[3] Hassoun, M. H. (1995). Fundamentals of Artificial
Neural Networks, MIT Press, Cambridge, Mass.

[4] Ikeda, N., Watta, P., Artiklar, M., and Hassoun, M.
(2001). “Generalizations of the Hamming Net for High
Performance Associate Memory,” Neural Networks, 14(9),
1189-1200.

[5] Lockwood G., and Aleksander, I. (2003). “Predicting the
behaviour of G-RAM networks,” Neural Networks, 16, 91-
100.

[6] Mu, X., (2004). “Automated Face Recognition: A
Weighted Voting Method,” Ph.D. Dissertation, Dept.
Electrical and Computer Engineering, Wayne State
University, Detroit, MI, 48202.

[7] Phillips, P., Moon, H., Rizvi, S., and Rauss, P. (2000).
“The FERET Evaluation Methodology for Face-Recognition
Algorithms,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(10), 1090-1104.

[8] Phillips, P. Wechsler, H., Huang, J., and Rauss, P. (1998).
“The FERET database and evaluation procedure for face
recognition algorithms,” Image and Vision Computing J,
16(5), 295-306.
6

	Abstract
	I. Introduction
	II. The Voting Associative Memory
	Figure 1. Structure of the voting associative memory.

	III. The Weighted Voting Memory
	Figure 2. Example of a memory set with 3 patterns and a set of local classifiers. The rankings assigned to each memory pattern by the weighted voting model are shown.
	(1)
	, (2)
	(3)

	IV. Assumptions for the Theoretical Analysis
	V. Distribution for and
	(4)
	(5)

	VI. Distribution for , , and
	(6)
	(7)
	(8)
	(9)

	VII. Identification Test
	(10)
	(11)

	VIII. Watch List Test
	(12)
	(13)
	(14)
	(15)
	(16)
	(17)
	(18)
	(19)

	IX. Conclusions
	References
	[1] Altmann, C., Bülthoff, H., and Kourtzi, Z. (2003). “Perceptual Organization of Local Elements into Global Shapes in the Human Visual Cortex, Current Biology, 13, 342-349.
	[2] Burton, A., Bruce, V., Hancock, P., (1999). “From Pixels to People: A Model of Familiar Face Recognition,” Cognitive Science, 23(1), 1-31.
	[3] Hassoun, M. H. (1995). Fundamentals of Artificial Neural Networks, MIT Press, Cambridge, Mass.
	[4] Ikeda, N., Watta, P., Artiklar, M., and Hassoun, M. (2001). “Generalizations of the Hamming Net for High Performance Associate Memory,” Neural Networks, 14(9), 1189-1200.
	[5] Lockwood G., and Aleksander, I. (2003). “Predicting the behaviour of G-RAM networks,” Neural Networks, 16, 91- 100.
	[6] Mu, X., (2004). “Automated Face Recognition: A Weighted Voting Method,” Ph.D. Dissertation, Dept. Electrical and Computer Engineering, Wayne State University, Detroit, MI, 48202.
	[7] Phillips, P., Moon, H., Rizvi, S., and Rauss, P. (2000). “The FERET Evaluation Methodology for Face-Recognition Algorithms,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(10), 1090-1104.
	[8] Phillips, P. Wechsler, H., Huang, J., and Rauss, P. (1998). “The FERET database and evaluation procedure for face recognition algorithms,” Image and Vision Computing J, 16(5), 295-306.

	A Weighted Voting Model of Associative Memory: Theoretical Analysis
	Xiaoyan Mu
	Department of Electrical and Computer Engineering
	Rose-Hullman Institute of Technology
	Terre Haute, IN 47803
	mu@Rose-Hulman.edu
	Paul Watta
	Dept. Electrical and Computer Engineering
	University of Michigan-Dearborn
	Dearborn, MI 48128
	watta@umich.edu
	Mohamad H. Hassoun
	Dept. Electrical and Computer Engineering
	Wayne State University
	Detroit, MI 48202
	hassoun@eng.wayne.edu

