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Project Summary

The goal of this project was to investigate new approaches for designing assoeiatale n
memories to overcome some of the well known problems of existing madels,adimited
capacity, low or unquantifiable errorrcectioncapability, large number gpurious memoes, and
impractical hardware implementation. In terms of hardware implementation, difficulties arise
either from requiring complicated hardware or else requiring an excessive numberaafinéc-
tion weights (for example, fully interconnected architectures).

To address these problem, we proposed a class of associative memory architectures, per-
formed a theoretical analysis, and did extensive testing and simulation on a difficult and real-world
problem: human face recognition. Also as part of this project, we constructed a database of human
face images suitable for associative memory research.

In terms of architectre, we proposed a class of associative memory models which generalize
the operation of the Hamming associative memory. Four different models were constructed:
Grounded Hamming Memory, Cellular Hamming Memory, Decoupled Hamming Memory, and
Two-level decoupled Hamming Memory. The grounded Hamming memory is similar to the Ham-
ming associative memory, but allows for a ground state which attracts all states with very low sig-
nal-to-noise ratio. The cellular Hamming memory utilizes local Hamming distance measures rather
than a global Hamming distance measure, leading to a cellular network auchitelcich is more
amenable to VLSI hardware implementation and fine-grapeadllel implementations. The
decoupled Hamming memory alaees local Hamming distance computations, but reguess
hardware than the cellular Hamming memory because the local windows do not overlap. Finally,
the two-level decoupled Hamming memory combines the decoupled Hamming distance computa-
tions with a higher-level decision making stage.

For the two-level decoupled Hamming network, and in the case of random and binary mem-
ory patterns, we were ablederive a theoretical analysis toachcterize its memory capacity and
error correction capability as a function of system dimension, window size, and input noise level.
The analysis also characterizes the expected number of votes that each image in the memory set
will receive.

We did extensive simulation and testing of the proposed models. Simulation results were
shown to be in close agreement with the theoretical results. More importantly, the capacity of the
two-level decoupled Hamming memory was shown to be substantially larger than other single
layer neural net mema@s, such as the Hopfield network.

In addition to measuring capacity, we applied the two-level memory to an important and dif-
ficult real-world problem: human face recognition, and performed extensive tests on the capacity
of the two-level memory in the case of storing these highly correlated patterns (images). As part of
this project, we formulated a database of face images which were obtained in a controlled setting
so that we can measure the classification performance of the system. We collected a database of
200 indivduals.

In face recognition applications, thelglp of the system to reject unknown indilials is just
as important as the ability to correctly identify known individuals. To provide a rejection mecha-
nism, we used a pair of thresholds to determine whether to classify the image or reject it. The
results of the face recognitiongetiments shwed that the two-level decoupled Hamming memory
gave good correct classificatiperformance on a database consisting of 100 pe#pei(nages
total in the memory set). For most of our face recognition experiments, the two-level memory gave
correct classification of 100% with a rejection of about 5%. For the false posipfeaments (the
ability of the system to reject unknown indiuals), the system achieves a false positive rate of
0.4%.
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1. Introduction

The goal of this project was to investigate new approaches for designing assoeiatale n
memories to overcome some of the well known problems of existing medelsas

sLimited capacity

sLow or unquantifiable error correctiomgablity
sLarge number of spurious memories
sImpractical hardware implementation

In terms of hardware implementation, difficulties arise either from requiring complicated
hardware or else requiring an excessive number efdahnection weights (for example, fully
interconnected architectures).

To address these problem, we proposed a class of associative memory architectures,
performed a theoretical analysis, and did extensive testing and simulation on a difficult and real-
world problem: human face recognition. Also as part of this project, we constructed a database of
human face images suitable for associative memory research. Our contributions in each of these

areas are briefly summarized below.

Architecture

To overcome the problem of limitezhpacity, we proposed a class of associative memory
models which generalize the operation of the Hamming associative memory. Ferendiff

models were constructed:

*Grounded Hamming Memory

«Cellular Hamming Memory

*Decoupled Hamming Memory
*Two-level decoupled Hamming Memory

The grounded Hamming memory is similar to the Hamming associative memory, but allows
for a ground state which attracts all states with very low signal-to-noise ratio. The cellular

Hamming memory utilizes local Hamming distance measures rather than a global Hamming



distance measuregdding to a cellular network archite# which is more amenable to VLSI
hardware implementation and figeained parallel implementations. Tdecoupled Hamming
memory also uses local Hamming distance computations, but requires less hardware than the
cellular Hamming memory because the local windows do not overlap. Finally, the two-level
decoupled Hamming memory combines the decoupled Hamming distance computations with a
higher-level decision making stage.

Although we initially formulated each oféee models for binary memory patterns,weze

able to extend their operation to the case of real-valued patterns (yelyssale imges).

Theoretical Analysis

For the two-level decoupled Hamming network, and in the case of random and binary
memory patterns, we were able derive a theoretical analysis to athcterize its memory
capacity and error caction capability as a function of system dimension, window size, and
input noise level. The analysis also characterizes the expected number of votes that each image in
the memory set will receive. An interesting result emerged: the system will perform extremely
well in the case of very large window sizes and very small windows, and performance will
decrease for intermedesized windws. The exact nature of the relation between system

performance and window sizedaptured by the theoretical analysis.

Testing and Simulation

We did extensive simulation and testing of the proposed models. Simulation results were
shown to be in close agreement with the theoretical results. More importantly, the capacity of the
two-level decoupled Hamming memory was shown to be substantially larger than other single
layer neural net mema@s, such as the Hopfield network.

In addition to measuring capacity, we applied the two-level memory to an important and
difficult real-world problem: human face recognition, and performed extensive tests on the

capacity of the two-level memory in the case of storing these highly correlated patterns (images).



In face recognitiorapplications, the ality of the system to reject unknown indiuals is
just as important as the ability to correctly identify known irdiimals. To provide a rejection
mechanism, we used a pair of thresholds to determine whether to classify the image or reject it.
The thresholds were based on the statistics of the images in the database. The results of the face
recognition experiments stved that the two-level decoupled Hamming memory gave good
correct classification performance on a database consisting of 100 people (400 images total in the
memory set). For most of our face recognition experiments, the two-level memory gact co
classification of 100% with a rejection of about 5%. For the false positive experiments (the ability

of the system to reject unknown individuals), the system achieves a false positivedrd®.of

Database Construction

As part of this project, we formulated a database of face images which were obtained in a
controlled setting so that we can measure the classification performance of the system (as
opposed to studying the effects of the pre-processing stages, such as face segmentation, size
normalization, etc.). We designed a simple laboraapgyaratus which allowed us to snap images
in a constrained way, and collected a database of 200 individuals. For eadtumidiwe steed 4
images in the memory set (or database) and 2 images in the test set. The 4 memory set images
showed different facial expressions of the subject: blank, smile, angry, surprised. The test set
contained a blank expression and an arbitrary expression, where the subject was told to try to fool

the system by giving an unusual expression.

Overview

All of the proposed associative memory models have been dodily described and
analyzed in the literature [1] - [11]. In the remainder of this report, we will give more details
concerning the scientific advances made in this proje&ettion 2, we will review the proposed

associative memory architectures. Section 3 will give a brief summary of the theoretical analysis



that was undertakergections 4 and 5 will give a summary of the experimaellts that we

obtained, as well as outline how the face database was constructed.

2. Summary of ANM Architecture Designs

In the following, we consider the binary autoassociative memory problem. In this case, the
given fundamental memory set is of the fofm*, x% ...,.x™}  , wheaeh patterx’  is aN-bit
binary vector, i.e.x' 0{0, }" j = 1,2 ....m .Thask is to design a system which associates
every fundamental pattern with itself. That is, when presentedxvith  as input, the system should
producex' at the output. In addition, whemresented with aoisyversion ofx' at the input, the
system should also produge  at the output.

Let the Hamming distance between two binary vectors yand (of the same dimension) be
denoted asi(x, y)

The Hamming associative memory [12-15] is a static model, and operates as follows: For
any memory keyx 0{0,1}" , the retrieved pattern is obtained by computing the Hamming
distancesi, = d(x, x) , selecting the minimum such distapce , and outputting the fundamental
memory x¥ (closest match). The most attractive feature of this model is its exponential capacity
[8] and large error correctiazapability. There are twserious disadvantages of this model. First,
there is no provision for a ground state. Second, the hardware implementation is cumbersome
because the computation of the required Hamming distances is a glolsalqaledtial operation,
and hence not immediately suitable to parallel and distributed processing systems. The following

sections detail generalizations of the Hamming memory which overcomdithisgons.

2.1 The Grounded Hamming Memory

The operation of the grounded Hamming associative memory model [2, 11] is similar to the
Hamming associative memory, but provides for a ground state (the zero statactaHtutlier

or “garbage” inputs. That is, the grounded Hamming associative memory outputs the closest



fundamental memory when there is a sufficiently close match between the memory key and one
of the fundamental patterns; othes&j when nosuch match ecurs, the grounded Hamming
memory converges to the ground state. The Hamming memory, on the other hand, has no such
ground state, and will produce a fundamental memory at the output no matter how noise-
corrupted the memory key. Clearly, there @pplications which require such a “no decision” state

in the presence of excessive noise. Figure 1 shows conceptually #remndi# between the

Hamming associative memory and the grounded Hamming memory in terms of state space basins

@ @ Fundamental Memory
@ @ p Error Correction
@ @ Ground State

Figure 1. Basins of attraction of the (a) the Hamming memory and (b)
the grounded Hamming memory.

of attraction.

The first step in the design of the grounded Hamming memory is to choose some desired
level of error correction The easiest way to do this is to choose a valu@,ftte number of
correctable bit errors. If the number of correctable bit errors is to be uniform for all memories in

the fundamental memory set, themust be chosen such that the following condition is satisfied
1 . i
15p<§mln{d(x,x)} (1)

where i#j 0{1,...,m} .Onceis chosen, the grounded Hamming memory operates as follows.
Given an input memory key , we computéx, x') foredach 1,2 ..., m . If there is an
indexi* which satisfiesd(x,x")<p , then the output of the memoxyis ; otherwise, the output

of the memory is the ground state . Note that by the condition established in'(1), if ~ exits, then



it is unique.

In Watta, Wang, and Hassoun [4], it was shown that an explicit Boolgmassxon for the
grounded Hamming memory operation can be derived. In this case, the system may be
implemented with digital hardware, as shown schematically in Figure 2. Here, ggch block is
a collection of AND and OR gates; see [4] for details. Unfortunately, this design is not practical

for high dimensional systems because it requires an excessive number of gates.

XlXZOOO X"

A 4(X)

A (%)

A o(X)

Figure 2. Circuit diagram of the grounded Hamming memory. Each
A (x) is a block of AND and OR gates.

A more efficient design of the grounded Hamming memory may be obtained by using linear
threshold gates (LTGs). The neural architeefor this system is shown in Figure 3. Here, each of
them LTGs is “tuned” to respond to a single fundamental memory. In this case, we require at most

m(N+ 1) LTG’s, which scales linearly ilN. Note the incredible savings iratdware for this
LTG-realization of the grounded Hamming memory as opposed to the digitalréadjization,

which requred an exponential number of gates. In this sense, and as mentioned in [16] in a
different context, the LTG isxponentially more powerftthan digital logic gates.

Another attractive feature of tteechitectire shown in Figure 3 is thease with which the

size of the basin of attraction for all fundamental memories can be changed. Here, tgpchange



need only adjust the threshold edich euron in the hidden layer. In fact, in this case, we don’t
require a uniform value g for all memories: we can define a nonuniform error correction for

each fundamental memory, j,= 1,2 ..,m ,where

1< pj<%min{d(xj,xk)ik=1,---,m’ k# J} (1)

Figure 3. LTG-realization of the grounded Hamming memory.

The state space structure for the grounded Hamming memory with nonuniform error
correction is shown schematically in Figure 4. Note that thengled Hamming memory with

uniform error correction uses the most conservative valpeid@., p = min{p;:k=1, ..., m}

The nonuniform grounded Hamming memory, though, is able to handle (for some images) much

more noise.

0 @ Fundamental Memory
‘ P,  Radius of Attraction
@ Ground State

Figure 4. The grounded Hamming memory with nonuniform error correction.



2.2 Cellular Hamming Memory

For the grounded Hamming net formulated abeaeh output bit is a function of the entire
input vector; i.e.y; = yi(x, X, ..., %Xy foreach = 1,2 ...,N . Substantial savings in hardware
may be achieved by restricting the dependence of each output to a small fraction of all possible
inputs, giving rise to the notion ofl@cal Hamming distancmeasures. Since our application will
be for image processing, we will suppose that the memory input pattern is 2-dimensional. In this
case, the cellular Hamming model is actually a two-dimensmoalniformcellular automaton
in which neighboring pixels interact locally, as shown in Figure 5(a). Here, the pixel
interconnectivity structure is shown as?2a< 2 \deumann-type neighborhood, but larger
neighborhoodssuch as thesx 3  Moore neighborhood, or edezhMoore neighborhoods may
be formed, as well.

Previous studies of 2-dimensional cellular automhfd ¢oncentrated on uniform systems in
which each automaton (pixel element) employs the same transitiggdating function. Here, to
obtain the operation of associativecall, each automaton may employ a different transition
function, formulated as follows. First, each pixel senses the state of the pixels in its neighborhood.
For example, suppose the pixel marked withrele in Figure 5(b) is chosen for updating and
suppose we employ ax 3  neighborhood (shown as the shaded sagiammding theupdating
pixel). The updating pixel updates itself as follows:

(1) Compute the Hamming distance between its neighborhoodguoaaion and the

corresponding pixels in all the memory patterns. For example, in Figure 5(b), the distances

{d,, d,, ...,d,} are computed.
(2) Choose the smallest such distadce

(3) Assume the value of the center pixel in that closest pixel pattern.

A simple heuristic may be employed in case of a tie in the minimum Hamming distance
computation. For example, if there is a tie between two images and if the two fundamental

memories agree at pixél,j) , then we simply assign the pixel to the common value. If, however,



they disagree afi,j) , then heuristically, we can keep the input image pixel at its present value.

Similar rules can be formulated in the case of a tie amoregaeanemory patterns.

Fundamental Memory Set
Image 1 Image 2 Imagen

Memory Key
(b)

Figure 5. (a) Structure of bcal interactions for the local Hammng net, assuming a
2 x 2 neighborhood. (b) Updating of the memory key by local Hammingdistance
computations (here, a3 x 3 neighborhood is used).

There are searal ways in which the dynamics can be computedpBmallel update all the
nodes in the netwonkpdate their state at each time instant. demuential updateonly one node
is updated at each time instant following some fixed ordering of tdesnBlock sequential
updateis a mixture of sguential and parallaipdate in which a partition is formed on the set of
nodes, and the updating of the partitions follseguentially, while the updating of the nodes
within each partition block iperformed in parallel. Forandom updateonly one randomly
chosen node is updated at each time instant.

It is important to note that the full Hamming net can be viewed as a special case of this
cellular memory, corresponding to the case where each pixel has a neighborhood consisting of the
entire image. We expect the quality of memory retrievals will be best for larger neightisrh
approaching the (optimalperformance of the Hamming net in tHenit of maximum

neighborhoods.



2.3 Decoupled Hamming Associative Memory

The local Hamming memory uses overlapping windows and henceregqai lot of
hardware. It is possible, though, to use non-eyging windavs, giving rise to thelecoupled
Hamming associative memory

The decoupled Hamming associative memory localizes the Hamming distance computation
by partitioning the input vector into non-owvegoping modules or windgs, and performing the
Hamming memory operation on each module independently. To beg@reappose we partition
the N input variables X = {x, x,, ..., xy}  Oof our memory intv modules: {X,, X,, ..., X,,}
such thatX, OX ,[O0X =X ,andX;nX =0 i#j . To simplify notation, assume that each
module has the same number of variables, denateth this case, we haveX| =n
i=12..,w,wherew = N/n isthe total number of windows or modules. Figure 6 shows the
structural diference between (a) the full Hamming memory and (b) the decoupled Hamming

memory.

X1 — -
L . [Hamming Y1,
s [ Memory | ¢
X1
X1,—>] —> V1,
Xl—> —» Y1 X
Xo—p Y2 2 .’ Hamming .’ Y2,
Hamming « | Memory |
* | Memory | ° * X *
. i . Xo, — 2 —> Y,
XN——> —»YN .
Xy, —» .
"7 7 Hamming Yw,
¢ | Memory [ ¢
X L]
Xy, —1 W — Y,

@) (b)

Figure 6. Structure of (a) the full Hamming and (b) the decoupled
Hamming memory.

Each module is a local Hamming memory and has its own local memory set, which is

obtained by partitioningeach fundamental memonk* intv. _memory subvectors:
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x =[x, ...xw] , where theith subvector x{,0{0,1}" contains the components x5f

specified by the variables in thiit@ moduleX; . In this case, we can associate with each module its

own local memory set of the form, = { Xy, ..., X(h}
is partitioned in

The decoupled Hamming memory operates as follows: The memory key
, and thedule Hamming

the same fashion as the fundamental memoxies:[x,), ... X]
memories independently (and in parallel) operate on each of the subvectpoofputing the
, and outputting the closest matching pattern.

Hamming distances(x, x{,) k= 1,2 ..., m
In the case of 2-dimensional patternseréhare many different topologies possible for the

layout of the local Hamming memories. For example, the local Hamming memories may be
arranged by row, by column, or in a checkerboard arrangement, as shown in Figure 7(a). Here, the

64 x 64 binary image is cared with non-ovedpping 16 x 16 windows in a checkerboard-type

layout. Each local Hamming memory then computes 256-bit Hamming distances as opposed to

4096-bit Hamming distances for the entire image.

64 bits
%
3
|
AN
16x 16
windows
(a) (b)

Figure 7. (a) Structure of local memories arranged as an array of non-

overlapping 16x 16 windows. (b) A spurious memaory.

One clear advantage of the decoupled Hamming memory over the full Hamming memory is
retrieval speed. Since all modules can perform their computations in paral&)aspeedup in
retrieval time can be achieved tgdicating a processor to each module. A disadganof this

stringent parallelism, though, is that the decoupled Hamming memory may retrieve a pattern

11



which was not part of the memory set; ispurious memoriesare possible. For image processing
applications, for example, théecoupled memory may converge to the correct fundamental
image, but contain scattered “chunks” of other images, as shown in Figure 7(b). The full

Hamming network, on the other hand, never retrieves spurious memories.

2.4 The Two-Level Decoupled Hamming Associative Memory

To overcome the spurious memory problem of the previous section, a two-tacalret can
be used which consists of a decoupled Hamming memory along with er-teglel decision
network. The architeate of this memory (in the case of 2-dimensional memory patterns) is
shown in Figure 8(a). Her@ach local Hamming memory or moduke  computes the closest
matching pattern and sends the index of the best match patterndecibien network. The
decision network examines the indicesl,, ..., 1, of all the modules and computes a single best
match indexi” . Each memory module then outputs its portion of the fundamental meémory ;
that is, each module outputs, i,= 1,2...,w . Since the decision network forces all modules
to output the same fundamental memory, the spurious memory problem of the previous section is

eliminated.

Decision
Network

Decision
Network

Figure 8. Structure of the two-level decoupled Hamming reork.
Numbers in (a) represent the index of the closest matchingattern(s),
and (b) shows the result after the voting.
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For example, in Figure 8(a), the window in the upper left hand corner of the image best
matches image 5 in the memory set, while the window in the lower right hand corner best matches
images 1 and 6 (there is a tie in the Hamming distance)ddtision network examines all the
votes from the local windows, determines that 5 is the most prevalent, and forces all windows to
outputits portion of image 5, as shown in (b).

There are many ways to design tezision network. In the simplesise, a majority rule is
used, in whichl” is chosen to be the most frequent index amgng ..., 1, . Utilizing the
emerging theory ofclassifier combination[18] and sensor fusion[19], more sophisticated
decision rules can be formulated. In this case, it may be desirable for each module to send an
ordered list of, say, the best 3 indicgsl, , I, to the decision network. For very noisy patterns,
the second and third choices of each module may contain useful information which can be
exploited with an appropriate combination scheme.

As with the single layer decoupled Hamming network, it is easy to see that the 2-level
decoupled Hamming network reduces to the full Hamming network in the case of a single
module:w = 1 . But unlike the single layer model, the 2-level decoupled Hamming memory also
reduces to the full Hamming network in the other extreme case:N . So the 2-level decoupled
Hamming network achieves the optimal performance of the Hamming memory for both the
maximum and minimum number of modules.

For intermediate window sizes, the capacity of the two-level decoupled Hamming memory is
not as large as the full Hamming memory. But even so, the two-level decoupled Hamming
memory with intermediate window size has a much higher capacity and much more error
correction than most of the standaelral-based associative memories, such as the correlation-
recorded Hopfield network [13, 14, 20], and other recording algorithms for the same single-layer
Hopfield-type neural structure.

Besides its performance advantages over staneéardimet models, the two-level decoupled

Hamming net is ideal for parallel ltavare implementation. Since the first level is modularized,

13



the computation can be done in parallel. Indepédcial prpose hardware consisting of a dense
array of digital signal processors already exists which can perform theeequmputations

efficiently (see, for example, [21]).

3. Summary of Theoretical Results

In this section, we give a theoretical analysis of the capacity of the two-level decoupled

Hamming network. The complete derivation of these results can be fo[iid in

3.1 Expected Number of Votes

We assume that the memory set consists of uniformly random vectors. That is, each bit of a
fundamental memory has a 50 percent chance of being 1 and 50 percent chance of being 0. In
addition, it is assumed that the memory key is aupbed \ersion of one of the fundamental
memories. In particular, the memory key is obtaine@dying an amourg  of uniform random
noise to one of the fundamental memories—calledtdrget memoryi.e., with probabilityp |,
each bit of the target iage is flipped from its original valu&ach of the remainingn-1
fundamental memories will be callednan-targetmemory, orother memory (short for “other
than the target”).

The analysis will proceed by first computing the probability that the given local window
votes for the target memory and the non-target memories, then the number of votes for the target
memory and non-target memories will be computed, and finally ajpecay will be eBmated by

computing the probability that the target memory gets the highest number of votes.

3.2 Probability of Voting for the Target and a non-Target Memory

In reference to Figure 9, let us fix a window in the memory key (say, the highlighted
window), and let us fix the corresponding window in each of the fundamental memories. In
addition, of them-1 non-target memories, let us focus our attention on a single one of them, say

theith memory.

14



Memory Set

Image 1 Target Image Imagei Imagem
N-bit image }t d

v

Memory Key

Figure 9. The fundamental memory set and memory key for the 2-level decoupled
Hamming memory. The Hamming distances ,d; ,ind  dte indicated.

Let d, denote the Hamming distance between the highlighted local window of the memory
key and the corresponding window of the target memory;let  denote the Hamming distance
between the highlighted local window of the memory key and the corresponding window of the
ith (non-target) image in the memory set, anddlet  denote the Hamming distameenb#te
highlighted local window of the target image and the corresponding winditviofage.

Clearly, since each of the fundamental memories is a uniform random binary vector, then the

probability thatd, = j bits (wher@<j<n ) follows a binomial distribution of the form
_ 1! 1"
Prov(e=i) = (3] [5] = G2 @
where Ejng is the number of combinationshatems chosepat a time, and is given by
o — n!
G0 jin-

Also, since the memory key is obtained by uniformly perturbing the target image with an

amount of noise , then the probability thét= k bits<(k < n ) also follows a binomial



distribution of the form
Prob(d = k) = HE(1-p)"" (2)

Another quantity that will be of interestiyob(d =j|d, = k) . Thatis, assuming k bits,
we want to compute the probability théit= j bits. The target image anththreemory image
are created completely independentlyeath other. If some of the bits of the targeagm are
subsequently flipped (which is how the memory key is created), it is still independentitbf the

memory image; hencerob(d = j|d, = k) hasthe same binomial distributien@&s d = j)

g
= = = =i) = QE - 1' "
Prob(d = |d,=k) = Prob(d =j) = = 593) 3)

Note that each of the other non-target memories in the memory set follows the same
distribution, since each of the fundamental memories was created independent and uniformly
random. Hence, Equation 3 holds for each non-target menmote memory set.

Now for which memory will the highlighted window vote? Well, for e&adh {0, 1, ..., n}
the target memory gets a votedjf= k and d; > k for all otherm—-1 memories (her&, ranges
over all indicesl, ..., m excluding the index of the target image). The probability that this occurs
is given by

n n m-1
P = P(n,p,m) = 3 Prob(d = k){z Prob(d = j|d; = k)}
k=0 j =k
Substituting Equations 2 and 3 into the above Equation, we get
n 0 n n|jn_l
< MOk _ ayn-kee M L
P(np.m) = 3 BEP'-0 0y B30
k=0 =k
On the other hand, for eaghi {0, 1, ..., n} iitle (non-target) memory gets a voteljf= k

and d, <k and d; > d, for all otherm-2 memories in the memory set (hére, ranges over all

16



indices 1, ..., m excluding index—for theith memory—and the index of the target memory).

Hence, the probability that th#h image gets a vote, = P,(n,p, m) is given by

i . n m-2
Pi — Z Prob(d:k)gz PI’Ob(d =j|dt=k){zlpl’0b(d=S|dt=k)} % (4)

k=0 ]=0 S=j

Substituting Equations 2 and 3 into the above Equation, we get

n k n -2
_ nJ 1 "
P(np,m = 5 Tk1—py ¥ v L] gy 2
(¢, p,m) ka&%( p) ﬁiangg&an
3.3 Number of Votes for the Target and non-Target Images

Thus far, we computed the probability that a single window will vote for the target and/or one
of the non-target memories. The decision network of the two-tleupled Hamming memory
counts up the votes for each of thhevindows covering the memory key and then chooses the
fundamental memory with the most votes. Hence, the question here is: What is the total number
of votes received by the target and each of the non-target memories?

Let N, denote the total number of votes received by the target memoty and  the number of
votes received by théh non-target memory. Both, amy  are random variables which follow a
binomial distribution. The expected value and variance of the number of votes for the target are
given by

N
My = E[N] = Ptﬁ

N

o; = VIN] = P(1-P)~

Similarly, the expected value and variance for the number of votes receiveditly nbe-

target memory is given by
N

W = E[N] = Piﬁ

N

of = V[N] = P(1-P)"
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By the central limit theorem, and assuming a large number of windows, the probability
distribution of the random variablé4 anNd  approaches a normal distribution. In this case, the

(approximate normal) density functién for the number of votes for the target image is given by

—(x=py)°
1 20°

e (5)

f(x) =
‘ 210,

and the density functiori,  for the number of votes for ithenon-target memory can be

approximated by

—(x—pp)°
1 202

Jﬁcie ' (6)

The normal approximations of Equations (5) and (6uaeful in obtaining numerical values

fix) =

for N, andN; in the case of largé

3.4 Estimation of Memory Capacity

In the previous subsection, we determined the expected number of votes for the target image
and the expected number of votes forithenon-target image. Of course the two-level decoupled
Hamming memory retrieves the correct (target) image wien is largeNthan all &rthe
m—1 non-target memories in the fundamental memory set. Thit is, must be largsl; than
andN, and ... and,_; , where we have assumed, without loss erhlign that the target
memory is themth memory (last memory) in the fundamental memory set. To compute the

probability of correct retrieval, then, we must determine the maximum of the “other” or non-target

max
i

votes; hence, we definegaantity N

N = max{ N, N, ..., N3} (7)

It can be shown that the maximum of a collection of continuous random variables is also a
random variable; furthermore, the cumulative distribution function (cdf) of the max random

variable is given by the product of the individual cdf’s of the random variables being maximized
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[22].

In this case, we hawa—-1 random variables which follow the continuous (and approximate)
probability density functions$,, f,, ..., f,_, given in Equation 6. Suppose that the corresponding
cumulative distribution functions are denotedfyF,, ..., F.,_; , respectively. Then, since each

of thesem—-1 distributions are identical, we have

Fra®) = Fi)F()...Fuoa(®) = [Fi()]™ (8)

max

The probability density function o can be obtained by differentidiogation 8

fmalX) = %Fmaix) = (m-1)[F )], 9)
Using the density function in Equation 9, the expected valug"tf can be computed as
follows:
NI = E[N"™] = JXfmalx)dx (10)
Finally, the probability of correct retrieval is the probability thet>N"" , i.e.,

P.or = Prob(N.>N"" which is computed below

—(x—p)?
Peod. N.p.m) = I:maxJ%me o (11)
i t

Using the standard normal distribution, Equation 11 can be recast as

17
Peot Npy ) = [ ez (12)

And using the standard error function

erf(x) = I: %{e‘zzdz
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Equation (12) can be written as

(13)

1 —N"0
Peo(n, N, p, m) = E 1+erfD ﬁc E
t

Equation 13 gives the probability that the target image will be retrieved as a function of
system dimensioi, local window sizen, noise levelp , and total number of stored pattemns
Numerical estimates of the capacity of the memory, then, can be determined by fixing values

for n, N, andp , and computing Equation 13 focreasing values oh.

4. Summary of Experimental Results: Random Binary Images
In this section we will summarize the performance of the two-ldeebupled Hamming

associative memory on binary images.

4.1 Expected Number of Votes

In order to compare with the results of our theoretical analysis, it is assumed that all memory
patterns ar@-dimensional images arate generated randomly from a uniform distribution. As
with the above theoretical analysis, it is assumed that one of the mema@gsirfthe target
image) is selected and corrupted with an am@unt  of uniform random roise< 0.5 ). This
corrupted image is used as the memory key, and it is desired that the system produce the target
image at the output; i.e. retrieve the target image.

Figure 10(a) shows a comparison of the simulation and theoretical results for the expected

number of votes for the targét, , an arbitrary other image (other than target) , and the
maximum among these other imad¢€s™ . For these simulatrons10, 000 images, the noise
level is set atp = 0.4 , and the local window sizeris= 2x 2 . The top Figure shows the

simulation results, and the bottom plot shows the corresponding theoretical distributions for these
guantities, as given in Equations 5, 6, and 9a)nthe image size is setit= 64x 64 , while in

(b), the image size iIN = 128x 128
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Figure 10. Comparison between simulation and theory for the case of a 2% 2

window size, input noise  p = 0.4memory size of M = 1000énd an image size
of () 64x 64and (b) 128x 128
The simulation results were obtained as follows. The corrupted target memory (with 40%
random noise) was input to the two-level Hamming memory, and the number of votes received by
the target, a randomly chosen other (non-target) image, and the maximum among the non-target
images were recorded. This process was repeated 500 times. In®gdhtba system retrieved
the target image, the retrieval was considered eessc otherwise it was counted as a failure. The
probability of correct retrieval was simply the number of successes out of 500 trials [8].
Clearly, the theoretical results provide a good model for the underlying distributions. Note
that in both cases, ¢he is sufficient separation in the distributions\Npf  and  to successfully

perform the classification, and hence the prdiiglof correct retrieval is unityP.,, = 1
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Figure 11. Comparison between simulation and theory for the case of a
window size and noise of p = 0.4nd a memory size of
size of (a) 64x 64 (b) 72x 72 (c) 128x 128and (d) 256x 256

4x4
M = 1QGtd an image

Figure 11 shows a case where there is overlapeeeatthe distributions. Here, the number of

images in the memory seti$ = 1000 , the input noisg s 0.4

n = 4x 4. Figure 11(a) shows the results in the case of an image sikte-84 x 64

, and the local window size is

. Here, the

probability of correct retrieval i®,,, = 0.56 . Figure 11(b) showsrbsults forN = 72x 72 . In

this case, the probability of correct retrievaPis, = 0.71
for larger image sizeNl = 128x 128 , ardl = 256x 256

memory patterns, as the image size increases, the separation bgtweem,
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4.2 Probability of Correct Retrieval

Fixing the system dimension Bt= 64x 64 and the noise level at0.4 , the simulations
of the previous section were repeated for various values of the number of fundamental ppatterns
from m = 10 tom = 10, 000. Figure 12 shows the probability of correct retrieval vs. the number
of stored patterns for various local window sizes. The dashed line gives the simulation result, and

the solid lines gives the theoretical values from Equation 13.

0.8
&
0.4

0.2

Probability of Correct Retrieval

0

10 10
Number of Images m

Figure 12. Probability of correct retrieval vs. number of stored
patterns m.

As noted earlier, the two-level Hamming network reduces to the full Hamming memory in
both of the extreme cases for the window size. This is illustrated in Figure 12, where the small
2x 2 neighborhood size gives very good performance. As the neighborhood size increases,
though, the performanategrades. In particular, thex 4 window gives the wpestormance.

By increasing the window size abo¥e 4 |, the performance improves.

4. 3 Capacity and Error Correction

Capacity is usually defined as the maximum number of patterns that can be stored such that
when presented at the input, the memory retrieves the correct pattern. This na@paofy,
though, does not address the issueradr correction. That is, if the input pattern is different from

the fundamental pattern by 1 pixel, can the memory still retrieve the correct pattern?
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The notion of capacity that will be usedrl is more stringent: Assuming an input noise level
of p, how many input patterns can be reliably stored?

Plots of the capacity of the two-level decoupled Hamming memory can leeaggsh as
follows. First, values fon, N, andp are fixed. Then, starting with a small valuenfpiP_,, is
computed using Equation 13. Initially, with such a stmgllP,,, is a near 1.0. Am is slowly
increased,P,,, decreases in value. Thiscpss of decreasing is continued untilP,,, falls
below 0.99. In this case, the largest valuenafhich givesP,,, = 0.99 is taken as the capadity

of the memory.

Figure 13(a) shows a plot of the capacity of the 2-level decoupled Hamming memory vs. the

input noise level for various window sizegx4 6x6 8x8 , ahdx 10 . For these
experiments, the image size was fixedNat 64 x 64 . As expected, the cagemiéases as the
noise increases. Figure 13(b) shows a platagiacity vs. image size for vaus values of input

noise:p = 0.3, 0.35, 0.4, and 0.45. Again, the image size is fixed»-abt4

25 20
?E\ 10x 10 E n=4x4
20 0.3
(o))
=) 8x8 g
g 15F 6x6 > 0.35
o g 10
o 4x4 s 0.4
@
g > 0.45
2 5 s 3
g §
= =
] — L L ] 0 | .
025 03 035 04 045 05 16 10 16 10
Noise ratio p :
Image size N
(a) (b)
Figure 13. (a) Capacity vs. noise level for window sizes: 4x4

6x6, 8x8,and 10x 10. (b) Capacity vs. image size for various
noise levels: 0.3, 0.35, 0.4, 0.45.

5. Summary of Experimental Results: Grayscale Face Images

To our knowledge, there has been no systemtiity ©f the memory capacity of associative

memory models for human face recognition. One of the reasons for this is that a large enough
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database of normalized images does not existp#d$ of this project, we collected a large
database of faces and used it to study the performance of various associative memory models and
classifier systems.

In a practical face recognition scheme, there are two main computational phases. The first
phase involves snapping the image and performing anyssyesepraessing computations to
make the image suitable for input to the recognition system. Typical preprocessing computations
include segmentation of the face part of the image from a larger image, alignment of the face
image to eliminate rotation and shift, and intensity and size normalization. The second phase is
the recognition task, where theage is classified as either a known indual or else rejected as
not known to the system.

Note that most of the sophisticated classification algorithms use template matching in some
form or another. Hence, the capacity results that we obtain will provide a baseline measure with

which all other algorithms can be compared.

5.1 Collection of a Face Database

In order to focus our research efforts on the associative memory aspect i@ciagmition
(the second phase of the recognition process), we formulated a database of face images which was
collected in a laboratory setting under semi-controlled conditions [7]. In this case, a minimal
amount of pre-preessing is requed before the image can be used in an automatic face
recognition scheme.

The specifications for the database described in this paper are as follows:

*Two image sets should be collectedda@abase which can be used for designing the
recognition and classification system, andst sewhich is used to test the system.

*The database and test set should contain several images of eactuaidishowing
different facial expressions.

*All images should be the same size with the face centered in the image.
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*The database should contain subjects of different ethnicities, samples of both men and
women, and samples from different age groups.

Variations due to lighting effects, head tilt, shift, rotation, and scaling should be minimized
as much as possible.

To eliminate the need for sophisticated preprocessing, a simple apparatus was constructed
which fixes the head of the person in the center of the image. Figure 14 shows the apparatus,
which consists of a wooden beam mounted on a tripod. Attached to one end of the beam is a frame
in which the subject puts his or her face while the picture is snapped. On the other end of the beam
is a video camera, which is used to snap the images. The camera is controlled by software, which
manages the image a&wping process and the process of storing the image in the computer’s

memory. The dimension of the snapped imag&is 115

Lamp
Camera g&
Frame — | \\
| O >

=

Chin Rest

7T\

Tripod
Figure 14. A schematic diagram of the experimental setup which is used to snap the
images. The subject sits in a chair (not shown) which is positioned in front of the
frame.
Two sets of images were collecteddatabaseand atest setiIn the database, each person is
represented by 4 images which show different facial expressions: a blank expression, smile,

angry, and surprised. The test set consists of 2 images fopegsdn: a blank facial expression

and an arbitrary expression. In the case of the arbitrary expression, the subject is told to try to fool
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the system by making an unusual expression. Note that the blank test image is different from the
blank memory image. The training set consists of 4 additional blank imagesclofsubject.
Hence, for each subject, a total of 10 imagesakent

Images of 200 different people were collected over a 1 year periodidnto sudy the false
positive performance of the system, veparate the 200 people into two 100-person databases:
DB-1 and DB-2. Note that all images for a given person wakent on the same day and under
roughly the same lighting conditions. The age of the subjects ranged from 13 years old to 50 years
old. In addition, samplewere taken over a variety of ethnic backgrounds, including fearm

American, African-American, East Indian, Middle-Eastern, and Asian.

Subiject Database Images Test Images

blank smile angry surprised blank arbitrary

685

184

Figure 2. Samples of the 72x72 database and test images for different
people (the 4 additional blank ige@s are not shown). In total, there are 200
individuals in the database.

In many face recognition schemes, it is desired that the subject’s hair not be part of the image,

because the system can be fooled if the subject changes hair style, etc. To eliminate the hair



artifacts, we cropped th&2 x 115 -dimensionabiges down ta2x 72 .

5.2 Correct Classification Experiments

Classification and rejection experimentgere run for both DB-1 and DB-2 using four

different algorithms: a nearest neighbor classifier [6], the two-level decoupled Hamming network

[1], eigenfaces [23-24], and a wavelet-based classifier [25k6AvBndow size was used by the

two-level decoupled Hamming network.

The correct classification results are shown in Table 1(a) for DB-1 and (b) for DB-2. In this

case, all of the results are out of 100 blank expression test images and 100 arbitrary expression

test images.

Correct
DB-1 classification

Blank Arbitrary

Nearest Neighbor  99-0-1 68-0-32
Voting Network ~ 97-0-3 65-0-35
Eigenfaces 87-0-13 47-1-52

Wavelet 99-0-1 64-1-35

@)

Correct
DB-2 classification

Blank Arbitrary

Nearest Neighbor 98-0-2 68-0-32
Voting Network ~ 97-0-3 62-1-37
Eigenfaces 97-1-2 48-1-51

Wavelet 97-0-3 60-0-40

(b)

Table 1. Correct classification performance for 4 different classifie nearest
neighbor classifier, voting network, eigenfaces, and wavelets on (a) the DB-1
database and (b) DB-2. In each case, the database consists of 100 people and 4
images per person (different expressions). The results are reported as: C-M-R,
where C is the number of images correctly classified, M is the number of images
misclassified, and R is the number of images rejected.

For each experiment, 3 numben® reported: C - M - R, where C indicates the number of

images correctly classified, M is the number misclassified, and R is the number rejected,

respectively. So when storing DB-1 and testing with the blank test images, the voting network

gives 97/100 images correctly classified, 0/100 images misclassified, and 3/100 images rejected.



The test set of arbitrary face expressions is much more difficult, and in this case, the results show

65/100 correctly classified, 0/100 ages misclasséd, and 35/100 iages rejected.

5.3 False Positive Experiments

Table 2 shows the results of the false positive experiments where DB-1 is tested with images
from DB-2. In this case, we desire all of the test images to be rejected by the system. Table 3
indicates the number of DB-2 images that were not rejected. For example, the nearest neighbor
classifier failed to reject 6 blank expression samples (out of 600 test images), 1 smile image, and
1 angry expression image. This gives a false positive identification rate of 8/1000 = 0.8%. Notice

the strong performance of the voting network in rejecting unknown individ/aid00 = 0.4%.

False positives
DB-1 rejecting DB-2
Blank Smile Angry  Surprised Arbitrary  Total

Nearest Neighbor  6/600 0 1 0 0 7/1000

Voting Network 2/600 0 2 0 0 4/1000
Eigenfaces 34/600 5 7 4 4 54/1000
Wavelet 21/600 5 3 3 0 32/1000

Table 2. Number of false positive images when DB-1 is used as the memory set
and DB-2 is used as the test set.

Finally, Table 3 shows the results when DB-2 is stored and tested with the images from DB-1.
The results are similar to those in Table 3.

These results are encouraging and show that the twodeeelupled Hamming network
performs well in comparison to some other standard pattern classificatiomjteefirsuch as the

eigenfaces method and the classical nearest neighbor method.
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False positives

Blank Smile Angry  Surprised Arbitrary  Total

Nearest Neighbor ~ 6/600 1 1 0 0 8/1000

Voting Network 3/600 2 0 1 0 6/1000
Eigenfaces 37/600 3 5 5 4 54/1000
Wavelet 33/600 6 6 2 3 50/1000

Table 3. Number of false positive images when DB-2 is used as the memory set
and DB-1 is used as the test set.
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8. Summary and Future Work

Strictly speaking, the capacity of the two-level Hamming memony is= 2" . That is, the
memory can store and exactly retrieve al patterns when presented with the perfect
(uncorrupted) pattern at the input. Compare this result to the well kngacitaresult for the
Hopfield memory m = 0.15N . Of course the price we pay for this much largpacity is in
terms of storage and retrieval time.

The two-level Hamming memory requires thatafundamental patterns be stored, whereas
the Hopfield network requires storage of anx N weight matrixer@hareapplications,
however, where the two-level Hamming memory requires less storage than the Hopfield weight
matrix. For example, suppose we want to store&l®x 512 image of each of the 9,000

undergraduate students at the University of Michigan-Dearborn. In this case, the two-level
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decoupled Hamming memonrgquires abou2.5 GB of storage (of size character), whereas the
Hopfield weight matrix requires the séme of abou8x 10 weights. Since weights are usually
stored as floating point numbers, the Hopfield weight matrix would require about 136 GB of
memory (assuming 2 bytes for each floating point number).

Clearly, whenevermN< N, the two-levelecoupled Hamming memonequires less
storage than a single layer neural associatargal memory (ANM). Of corse, the single layer
ANM is the simplest network architere possible, and more sophisticated multilayer associative
neural memories usually require considerably more #fan  weights.

The notion of capacity discsed in this paper focused on error correctapadlity, which is
a more practical concept than the typical definitionagfacity. This paper demonstrated that the
two-level decoupled Hamming memory provides a large amount of errecton.

In future work, we plan to continue and extend our associative memory model work in the
area of face recognition in the following directions:

1. Improve the process and apparatus used to collect face images.

2. Collect a larger database of normalized face images.

3. Improve the performance of the associative memory and classification algorithms.

4. Measure the performance of various associative memory models and classification
systems as a function of how many people and images are stored in the database and for 3
different types of experiment€orrect classification experimentdleasure the ability of the
system to correctly classify test images of people who are in the datfladse.Positive
experimentsMeasure the ability of the system to reject individuals who are not in the database.
Classification over time experimenkdeasure the ability of the system tom@mtly classify some
of the individuals in the database over an ed¢ehperiod of time, say 6 months or a year.

5. Formulate a notion of capacity of associative memory in terms of results of the above 3
experiments, and using simulations, determine the capacity adugaassociative memory

models and classification systems in the presence of these highly correlated memory patterns.
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