Smart Car: Collision Avoidance

Ajeena Kurian
Mike Krause
George Kachouh
Overview

- Purpose
- Schedule
- Group Work Divided
- Research
- Parts List / Individual Parts
- Overall Block Diagram and Schematic
- Cost Analysis
- Problems
- Design Alternatives
- Previous patents and OSHA regulations
- Conclusion
- Questions
Purpose Of The Smart Car

- Increase safety on the road through collision avoidance
- Primitive Artificial Intelligence (AI)
- Hardware and software integration
- Engineering design and production
Schedule

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 17-23</td>
<td>March 24-30</td>
<td>March 31-April 6</td>
<td>April 7 - 13</td>
<td>April 14-20</td>
<td>April 21-27</td>
</tr>
<tr>
<td>Initial brainstorming and design comparison</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Searched online for possible parts for Smart Car</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Began ordering parts and receiving them</td>
<td>Hardware implementation</td>
<td></td>
<td>Writing code</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Writing Report and Power Point Presentation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance Against Schedule

Estimated Production Times
- Product production time of 4-5 weeks
- Hardware production time of 20 hours
- Software production time of 10 hours
- Presentation Report time of 15 hours

Actual Production Times
- Hardware production time approx. 30 hours
- Software production time approx. 20 hours
- Presentation Report time of 13 hours
George Kachouh

- Early research and development
 - Researched component specifications online
- Hardware
 - Assisted in hardware testing
- Software
 - Assisted writing code
 - Assisted in de-bugging code
- Project Report
 - Assisted in writing report
Group Work Divided

- Michael Krause
 - Early research and development
 - Created early designs for car
 - Hardware
 - Main construction and design of hardware
 - Main hardware testing and debugging
 - Software
 - Assisted writing code
 - Assisted in de-bugging code
 - Project Report
 - Supported in writing parts of report
Group Work Divided

- Ajeena Kurian
 - Early research and development
 - Researched component specifications online
 - Hardware
 - Assisted in hardware testing and debugging
 - Software
 - Assisted writing code
 - Assisted in de-bugging code
 - Project Report
 - Assisted in writing report
Research

- Idea introduced by Mike
- Research done by group
 - Online
 - Parts search
 - Alternative design
 - Person to person
 - Amplification design
 - Sensor alternatives
General Part List

- HC11 Micro Controller
- Radio Shack Street Tiger Car
- H-Bridge
- Infrared Proximity Detector
- Digital Voice Module
HC11-Micro Controller
HC11-Micro Controller

- Current Capacity: 25mA
- Voltage: 6V
- Send and Receive Data
 - Ports used: A and D
 - Pins used
HC11-Micro Controller

<table>
<thead>
<tr>
<th>NOT</th>
<th>NOT</th>
<th>PD3</th>
<th>PD2</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>En-B</td>
<td>En-A</td>
<td>B</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Forward</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Reverse</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Stationary</td>
</tr>
</tbody>
</table>

- **Forward** when En-B = 0 and En-A = 1
- **Reverse** when En-B = 1 and En-A = 0
- **Stationary** when both En-B and En-A are 1
Radio Shack Street Tiger Car
Radio Shack Street Tiger Car

- Current Requirement: 240-280 mA
- Voltage: 6V
 - Uses four AA Batteries
- Reverse Motion
 - Mechanical front drive
H-Bridge
H-Bridge

- Detailed Parts
 - 4 npn FETs
 - Resistors
 - Capacitors
 - Photovoltaic ICs
- Four logic inputs control operation
- Acts like a current amplifier
Infrared Proximity Detector
Infrared Proximity Detector

- Uses a Sharp GP1U581Y IR sensor
- 2 IR LED’s
- Detection range between 8 to 24 inches
- IRPD has two inputs, and one output
 - 2 inputs for each IRLED
 - 1 output for IR Sensor
- Able to detect 35° on each side of the car
- Uses 38 KHz signal Carrier
Infrared Proximity Detector

Note: This illustration shows how the sensor can detect in three quadrants.

- Left Only
- Both
- Right Only
Digital Voice Module
Digital Voice Module

- Notifies user when a barrier is detected
- 20 seconds of audio using 1 MB of RAM at 44.1 KHz, 50kbs
- Recording Requires constant 5V
- Playing requires a 5V pulse
The Full Picture
Block Diagram Of Code

- Timer Begins, 4 seconds
- Setup LCD
- Load Counter Values

- Barrier
 - 0
 - 1

- Delay for 1 second
 - Set Motor Pins = 0

- Use Interrupts for Once a Second
 - Increment Counter 99:59:59

- Activate Voice Module
 - Reverse Voltage to turn 90 degrees
Block Diagram Of Code

- Counter Logic for Time Control
- Cut Voltage to Motor to Delay for 1 second
- Send +5 Volts to Motor for Forward Bias
Cost Analysis

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio Shack Car: The Street Tiger</td>
<td>$15.88</td>
</tr>
<tr>
<td>DVM-58D Digital Voice Module</td>
<td>$82.45</td>
</tr>
<tr>
<td>H-Bridge designed by GM</td>
<td>$15.00</td>
</tr>
<tr>
<td>Infrared Proximity Detector</td>
<td>$47.00</td>
</tr>
<tr>
<td>M68HC11 Micro-controller</td>
<td>$99.99</td>
</tr>
<tr>
<td>Total</td>
<td>$260.32</td>
</tr>
</tbody>
</table>
Difficulties

- Current Amplification
 - What to use?
- H-bridge
 - Fabrication problems
- Our Code
- Hardware interface
Design Alternatives

- Type of car
 - Turning mechanism
- Sensors
 - Laser
 - Bright LED’s
 - Infrared LED’s
- Amplification
 - Glorified AND Gate
Saab AB uses a system and method for avoidance of collision between vehicles

Donnelly Corporation uses the idea of a proximity detector system for vehicles

ECE 4600 Group 13 incorporated both ideas
Safety Concerns – OSHA

- No pollutants
 - Battery powered

- Accessibility
 - Convenient for the blind
 - Convenient for the handicapped
Conclusion

- Increased safety on the road
- Demonstrates AI decision making process
- Integrates hardware and software
- Demonstrates Group #13 engineering capability
Questions ??