Lecture 4: Graph Algorithms
Definitions

- **Undirected graph**: $G = (V, E)$
 - V finite set of vertices, E finite set of edges
 - any edge $e = (u, v)$ is an unordered pair
- **Directed graph**: edges are ordered pairs
- If $e = (u, v)$ is an edge in an undirected graph
 - e is incident on vertices u and v
- If directed graph
 - e is incident from u and incident into v
- If $e = (u, v)$ is an edge and G undirected
 - u and v are adjacent to each other
- If $e = (u, v)$ is an edge and G directed
 - v is adjacent to u
Definitions

Undirected graph

Directed graph
Definitions

- **A path from u to v:** a sequence \(<v_0, v_1, v_2, \ldots, v_k> \) of vertices where \(v_0 = v \), \(v_k = u \) and \((v_i, v_{i+1}) \) are edges.
- **Path length** = number of edges in the path
- **u reachable from v:** if there exists a path from \(v \) to \(u \)
- **Simple path:** if all of its vertices are distinct
- **Cycle:** if \(v_0 = v_k \)
- **Acyclic graph** = a graph without cycles
- **Simple cycle:** if all the intermediate vertices are distinct
- **Connected graph:** if every pair of vertices is connected by a path.
- \(G' = (V', E') \) is a **subgraph** of \(G = (V, E) \) if \(V' \) is a subset of \(V \) and \(E' \) is a subset of \(E \)
- **Complete graph:** if each pair of vertices is adjacent
- **Weighted graph:** each edge has an associated weight
Adjacency Matrix Representation

\[A = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix} \]

Lower bound for an algorithm (using adjacency matrix representation) needing to traverse all the edges = \(\Omega(|V|^2) \)

Space complexity = \(\Theta(|V|^2) \)
Adjacency List Representation

Adj[v] = list of vertices adjacent to v

Space complexity = \(\Theta(|E|)\)

Efficient when the graph is sparse (i.e. \(|E| \ll O(|V|^2)\))

Lower bound for an algorithm (using adjacency list representation) needing to traverse all the edges = \(\Omega(|V|+|E|) = \Omega(|E|)\)
Minimum Spanning Tree: Prim’s Algorithm

- *Spanning Tree of an undirected graph* G: a subgraph that is a tree containing all the vertices of G.
- *Minimum Spanning Tree (MST) for a weighted graph*: a spanning tree with minimum weight.
- If G not connected it cannot have a spanning tree, it has a *spanning forest*.
- Determining the spanning forest \Rightarrow apply MST algorithm for each connected component
- *Assumption*: we consider only connected graphs.
MST: Example

G

MST of G
Prim’s Algorithm

- **Greedy algorithm** i.e. it makes whatever is the best choice at the moment
- **Idea:** Selects an arbitrary starting vertex and then grows the tree by choosing a new vertex and edge that is guaranteed to be in the MST.
- **Notations:**
 - \(V_T \) = set that holds the vertices of the MST during its construction
 - \(d[v] \) = holds the weight of the edge with least weight from any vertex in \(V_T \) to vertex \(v \).
- **Complexity:** \(T_s = \Theta(n^2) \)
- Best implementation using priority queues \(O(E \log V) \)
Prim’s Algorithm

procedure PRIM_MST(V, E, w, r)
begin
 \(V_T := \{r\} \);
 \(d[r] := 0 \);
 for all \(v \in (V - V_T) \) do
 if edge \((r, v)\) exists set \(d[v] := w(r, v) \);
 else set \(d[v] := \infty \);
 while \(V_T \neq V \) do
 begin
 find a vertex \(u \) such that \(d[u] := \min\{d[v] | v \in (V - V_T)\} \);
 \(V_T := V_T \cup \{u\} \);
 for all \(v \in (V - V_T) \) do
 \(d[v] := \min\{d[v], w(u, v)\} \);
 endwhile
end PRIM_MST
Prim’s Algorithm: Example

(a) Original graph

(b) After the first edge has been selected

\[
\begin{array}{ccccccc}
\text{Adjacency Matrix} & a & b & c & d & e & f \\
\hline
a & 0 & 1 & 3 & \infty & \infty & 3 \\
b & 1 & 0 & 5 & 1 & \infty & \infty \\
c & 3 & 5 & 0 & 2 & 1 & \infty \\
d & \infty & 1 & 2 & 0 & 4 & \infty \\
e & \infty & \infty & 1 & 4 & 0 & 5 \\
f & 2 & \infty & \infty & \infty & \infty & 5 & 0 \\
\end{array}
\]
Prim’s Algorithm: Example

(c) After the second edge has been selected

(d) Final minimum spanning tree

\[
\begin{array}{ccccccc}
 & a & b & c & d & e & f \\
\hline
 a & 0 & 1 & 3 & \infty & \infty & 3 \\
b & 1 & 0 & 5 & 1 & \infty & \infty \\
c & 3 & 5 & 0 & 2 & 1 & \infty \\
d & \infty & 1 & 2 & 0 & 4 & \infty \\
e & \infty & \infty & 1 & 4 & 0 & 5 \\
f & 2 & \infty & \infty & \infty & \infty & 5 \\
\end{array}
\]

\[
\begin{array}{ccccccc}
 & a & b & c & d & e & f \\
\hline
 a & 0 & 1 & 3 & \infty & \infty & 3 \\
b & 1 & 0 & 5 & 1 & \infty & \infty \\
c & 3 & 5 & 0 & 2 & 1 & \infty \\
d & \infty & 1 & 2 & 0 & 4 & \infty \\
e & \infty & \infty & 1 & 4 & 0 & 5 \\
f & 2 & \infty & \infty & \infty & \infty & 5 \\
\end{array}
\]
Prim’s Algorithm: Parallel Formulation

- It is hard to select more than one vertex to include in the MST
- The iterations of the while loop cannot be easily parallelized.
- **Parallelization:** partition V into p subsets using the 1-D block mapping.
- V_i = the set of vertices assigned to P_i

Steps:
- P_i computes
 $$d_i[u] = \min \{ d_i[v] \mid v \text{ belongs to } (V-V_T) \cap V_i \}$$
- All-to-one reduction to compute the minimum over all $d_i[u]$ at P_0
- P_0 inserts the new vertex u into V_T and broadcasts u to all processes
- P_i responsible for vertex u marks it as belonging to V_T
- Each process updates the value of $d[v]$ for its local vertices
Prim’s Algorithm: Parallel Formulation

\[d[1..n] \]

\[
\begin{array}{c|c|c|c}
\hline
\text{Processors} & 0 & 1 & i & p-1 \\
\hline
\end{array}
\]

\[\frac{n}{p} \]
Parallel Prim’s Algorithm: Analysis

Steps: (executed n times)

- **P_i** computes
 \[d_i[u] = \min \{d_i[v] \mid v \text{ belongs to } (V-V_T) \cap V_i \} \]
 => takes $\Theta(n/p)$

- All-to-one reduction to compute the minimum over all $d_i[u]$ at P_0
 => takes $\Theta(\log p)$

- P_0 inserts the new vertex u into V_T and broadcasts u to all processes
 => takes $\Theta(\log p)$

- P_i responsible for vertex u marks it as belonging to V_T
 => takes $\Theta(1)$

- Each process updates the value of $d[v]$ for its local vertices
 => takes $\Theta(n/p)$

- $T_p = \Theta(n^2/p) + \Theta(n \log p)$

- Cost optimal if $(p \log p)/n = O(1) \Rightarrow p = O(n/\log n)$

- Isoefficiency function $\Theta(p^2 \log^2 p)$
Single-Source Shortest Paths: Dijkstra’s Algorithm

- Edsger W. Dijkstra (1930-2002)
 http://www.cs.utexas.edu/users/EWD/
- *Single-source shortest paths problem:* find the shortest paths from a vertex v to all other vertices in V
- *Shortest path* = minimum weight path
- *Dijkstra’s Algorithm* (1959) solves the problem on both directed and undirected graphs with non-negative weights.
- Similar to Prim’s algorithm
- *Greedy algorithm:* it always chooses an edge to a vertex that appears closest.
- $l[u] =$ minimum cost to reach vertex u from vertex s by means of vertices in V_T.
Single-Source Shortest Paths:
Dijkstra’s Algorithm

procedure DIJKSTRA_SINGE_SOURCE_SP(V, E, w, s)
begin
 \(V_T := \{s\}; \)
 for all \(v \in (V - V_T) \) do
 if \((s, v) \) exists set \(l[v] := w(s, v); \)
 else set \(l[v] := \infty; \)
 while \(V_T \neq V \) do
 begin
 find a vertex \(u \) such that \(l[u] := \min\{l[v] \mid v \in (V - V_T)\}; \)
 \(V_T := V_T \cup \{u\}; \)
 for all \(v \in (V - V_T) \) do
 \(l[v] := \min\{l[v], l[u] + w(u, v)\}; \)
 endwhile
 end DIJKSTRA_SINGE_SOURCE_SP

\(T_s = \Theta(n^2) \)
Example: Dijkstra’s Single-Source Shortest-Paths Algorithm
Parallel Dijkstra’s Algorithm: Analysis

- Same as Prim’s algorithm
- $T_p = \Theta(n^2/p) + \Theta(n \log p)$
- Cost optimal if $(p \log p)/n = O(1) \Rightarrow p = O(n/\log n)$
- Isoefficiency function $\Theta(p^2 \log^2 p)$
All-Pairs Shortest Paths

- **All-pairs shortest paths problem**: find the shortest paths between all pairs of vertices v_i, v_j such that $i \neq j$.
- **Output**: nxn matrix $D = (d_{i,j})$ such that $d_{i,j}$ is the cost of the shortest path from v_i to v_j.
- **Dijkstra’s Algorithm**: for graphs with non-negative weights

 Idea: Apply Dijkstra’s Algorithm for each vertex $\Rightarrow T_s = \Theta(n \times n^2)$

- **Floyd’s Algorithm**: for graphs having negative weights but no negative-weight cycles.
Dijkstra’s Algorithm: Parallel Formulation

- Two parallel formulations:
 - **Source-partitioned formulation**: partition the vertices among different processes and have each process compute the single-source shortest path for all vertices assigned to it.
 - **Source-parallel formulation**: assign each vertex to a set of processes and use the parallel formulation of the single-source shortest path algorithm.
Source-Partitioned Formulation

- Uses n processes
- Each process P_i finds the shortest paths from vertex v_i to all other vertices by executing the sequential Dijkstra’s algorithm locally.
- If adjacency matrix is replicated at each process \Rightarrow no communication
- $T_p = \Theta(n^2)$
- $S = \Theta(n^3)/\Theta(n^2) = \Theta(n)$
- $E = \Theta(1) \Rightarrow$ very good algorithm!
- Isoefficiency: at most n processes can be used $\Rightarrow p = n \Rightarrow W = \Theta(n^3) = \Theta(p^3)$ not very scalable!
Source-Parallel Formulation

- Uses parallel Dijkstra for each vertex => $p > n$
- p processes are divided into n partitions each with p/n processes.
- Each partition solves one single-source shortest path problem.
- *Total number of processes* that can be used efficiently => $O(n^2)$
- $T_p = \Theta(n^2/(p/n)) + \Theta(n \log(p/n)) = \Theta(n^3/p)+\Theta(n \log p)$
- *Cost optimal* if $p \log p = O(n^2) => p \log n = O(n^2)$
 => $p = O(n^2/\log n)$
- *Isoefficiency due to communication*: $\Theta((p \log p)^{1.5})$
- *Isoefficiency due to concurrency*: $\Theta(p^{1.5})$
 (because $p = O(n^2)$)
- *Overall isoefficiency*: $\Theta((p \log p)^{1.5})$
- More scalable than source-partitioned formulation
- It exploits more parallelism!
Floyd’s Algorithm

• Robert W Floyd (1936-2001)
• “Bob used to say that he was planning to get a Ph.D. by the “green stamp method,” namely by saving envelopes addressed to him as ‘Dr. Floyd’. After collecting 500 such letters, he mused, a university somewhere in Arizona would probably grant him a degree.” – D. Knuth (sigact.acm.org/floyd/)

• Observations:
 – \(A_k = \{v_1, v_2, \ldots, v_k\} \) a subset of vertices for \(k \leq n \)
 – \(p_{i,j}(k) \) the minimum weight path from \(v_i \) to \(v_j \) whose intermediate vertices belong to \(A_k \)
 – \(d_{i,j}(k) = \text{weight of } P_{i,j}(k) \)
 – If \(v_k \) is not on the shortest path from \(v_i \) to \(v_j \) then \(p_{i,j}(k)=p_{i,j}(k-1) \)
 – If \(v_k \) is in \(p_{i,j}(k) \) then break \(p_{i,j}(k) \) into two paths \(v_i \rightarrow v_k \) and \(v_k \rightarrow v_j \). These paths use vertices from \(\{v_1, v_2, \ldots, v_{k-1}\} \Rightarrow \)
 \[d_{i,j}(k) = d_{i,k}(k-1) + d_{k,j}(k-1) \]

• Recurrence relation:

\[
d_{i,j}(k) = \begin{cases}
 w(v_i, v_j) & \quad k = 0 \\
 \min\{d_{i,j}(k-1), d_{i,k}(k-1) + d_{k,j}(k-1)\} & \quad k \geq 1
\end{cases}
\]

• The solution is given by \(D(n) \)
Floyd’s Algorithm

procedure FLOYD_ALL_PAIRS_SP(A)
begin
 \(D^{(0)} = A \);
 for \(k := 1 \) to \(n \) do
 for \(i := 1 \) to \(n \) do
 for \(j := 1 \) to \(n \) do
 \(d_{i,j}^{(k)} := \min \left(d_{i,j}^{(k-1)}, d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)} \right) \);
 \end FLOYD_ALL_PAIRS_SP

\(T_s = \Theta(n^3) \)
Space complexity = \(\Theta(n^2) \)
Floyd’s Algorithm: Example

\[
\begin{align*}
D(0) & = \begin{bmatrix}
0 & 8 & 5 \\
3 & 0 & \infty \\
\infty & 2 & 0
\end{bmatrix} &
D(1) & = \begin{bmatrix}
0 & 8 & 5 \\
3 & 0 & 8 \\
\infty & 2 & 0
\end{bmatrix} \\
D(2) & = \begin{bmatrix}
0 & 8 & 5 \\
3 & 0 & 8 \\
5 & 2 & 0
\end{bmatrix} &
D(3) & = \begin{bmatrix}
0 & 8 & 5 \\
3 & 0 & 8 \\
5 & 2 & 0
\end{bmatrix}
\end{align*}
\]
Floyd’s Algorithm: Parallel Formulation

- Partition matrix $D(k)$ using 2-D block partitioning
- Each $(n/p^{1/2} \times n/p^{1/2})$ block is assigned to one process

\[
\begin{array}{c|c|c}
\frac{n}{\sqrt{p}} & \frac{n}{\sqrt{p}} & \frac{n}{\sqrt{p}} \\
(1,1) & (1,2) & \\
(2,1) & & \\
\end{array}
\]

\[(i - 1) \cdot \frac{n}{\sqrt{p}} + 1, (j - 1) \cdot \frac{n}{\sqrt{p}} + 1\]
Floyd’s Algorithm: Parallel Formulation

- Each process updates its part of the matrix during each iteration
- During the k-th iteration each process needs certain segments of the k-th row and k-th column
- Idea: broadcast row-wise and column-wise the corresponding segments
Floyd’s Algorithm:
Parallel Formulation

procedure FLOYD_2DBLOCK(D(0))
begin
 for k := 1 to n do
 begin
 each process Pᵢ,j that has a segment of the kᵗʰ row of D(ᵏ⁻¹);
 broadcasts it to the Pᵢ,∗ processes;
 each process Pᵢ,j that has a segment of the kᵗʰ column of D(ᵏ⁻¹);
 broadcasts it to the Pᵢ,∗ processes;
 each process waits to receive the needed segments;
 each process Pᵢ,j computes its part of the D(ᵏ) matrix;
 end
end FLOYD_2DBLOCK
Parallel Floyd’s Algorithm: Analysis

- **Assumption:** bisection bandwidth = $\Theta(p)$
- **Broadcast** of $n/p^{1/2}$ elements to $p^{1/2}-1$ processes
 $\Rightarrow \Theta(n/p^{1/2} \log p)$
- **Synchronization step** $\Rightarrow \Theta(\log p)$
- **Local computation** of $D(k)$ $\Rightarrow \Theta(n^2/p)$
- $T_p = \Theta(n^3/p) + \Theta(n^2/p^{1/2} \log p)$
- **Cost optimal** if $(p^{1/2} \log p)/n = O(1)$ $\Rightarrow p = O(n^2/\log^2 n)$
- **Isoefficiency due to communication:** $\Theta(p^{1.5} \log^3 p)$
- **Isoefficiency due to concurrency:** $\Theta(p^{1.5})$
- **Overall isoefficiency:** $\Theta(p^{1.5} \log^3 p)$
- The overhead due to communication can be improved if the execution of the algorithm is pipelined \Rightarrow the most scalable algorithm for all-pairs shortest paths.
Transitive Closure

- **Problem:** determine if two vertices in a graph are connected
- **Transitive closure of G:**
 the graph $G^* = (V, E^*)$ where
 $E^* = \{(v_i, v_j) \mid \text{there is a path from } v_i \text{ to } v_j \text{ in } G\}$
- **Connectivity matrix $A^* = (a^*_{i,j})$$**

 \[
 a^*_{i,j} = \begin{cases}
 1 & \text{if there is a path from } v_i \text{ to } v_j \text{ or } i = j \\
 \infty & \text{otherwise}
 \end{cases}
 \]
- **Method 1:** assign weights of 1 to each edge and use any of the all-pairs shortest paths algorithms and obtain matrix A from D

 \[
 a^*_{i,j} = \begin{cases}
 1 & \text{if } d_{i,j} > 0 \text{ or } i = j \\
 \infty & \text{if } d_{i,j} = \infty
 \end{cases}
 \]
- **Method 2:** use Floyd’s algorithm on the adjacency matrix replacing the “min” and “+” by “or” and “and”

 Initially: $a_{i,j} = 1$ if $i = j$ or (v_i, v_j) is an edge of G and $a_{i,j} = 0$ otherwise

 Matrix A^*: $a^*_{i,j} = \infty$ if $d_{i,j} = 0$ and $a^*_{i,j} = 1$ otherwise
Transitive Closure: Example

G

Transitive closure G^*
Connected Components

- **Connected components of undirected graph** G: the maximal disjoint sets C_1, C_2, \ldots, C_k such that $V = C_1 \cup C_2 \cup \ldots \cup C_k$ and u, v in $C_i \Leftrightarrow u$ is reachable from v and v is reachable from u
- C_i are equivalence classes of vertices under “is reachable from” relation

Graph with 3 connected components
Depth-First Search (DFS) Based Algorithm

• **Idea:** Search “deeper’ in the graph

• **DFS Algorithm:**
 – Edges are explored out of the most recently discovered vertex \(v \) that still has unexplored edges leaving \(v \).
 – When all of \(v \)’s edges have been explored, the search backtracks to explore edges leaving the vertex from which \(v \) was discovered.
 – The process continues until we have discovered all vertices reachable from the original source.
 – If any undiscovered vertices remain, then one of them is selected as a new source and the search is repeated.
 – The process is repeated until all vertices are discovered.

• \(T_s = \Theta(|E|) \)
Depth-First Search (DFS) Based Algorithm

- **A**: unexplored vertex
- **A**: visited vertex
- **unexplored edge**
- **discovery edge**
- **back edge**
Depth-First Search (DFS) Based Algorithm
Using DFS to Find Connected Components

(a) G

(b) Connected components of G
Connected Components: Parallel Formulation

- Partition the adjacency matrix of G into p parts and assign each part to one of p processes
- P_i has subgraph G_i

Algorithm:
- **First step:** Each P_i computes the dept-first forest of G_i using DFS algorithm \Rightarrow p spanning forests
- **Second step:** Pairwise merging of the p spanning forests into one spanning forest

- How to merge the forests?
- **Solution:** use disjoint sets operations
Connected Components: Parallel Formulation

- **Disjoint sets operations:**
 - \(\text{Find}(x) \) returns a pointer to the representative element of the set containing vertex \(x \) (unique to each set)
 - \(\text{Union}(x,y) \) unites the sets containing elements \(x \) and \(y \)

- **Algorithm:**
 - Initially each edge is a set
 - \textbf{for} each edge \((u,v)\) in \(E \)
 - \textbf{if} \(\text{Find}(u) \neq \text{Find}(v) \) \textbf{then} \(\text{Union}(u,v) \)

- **Complexity:** \(O(n) \)

 For two forests => at most \(n-1 \) edges of one forest are merged to the edges of the other
Parallel Connected Components: Example
Parallel CC using 1-D Block Mapping

- The adjacency matrix is partitioned into p stripes
- Assume a p process message passing system
- **Step 1**: computing the spanning forest for graphs with $(n/p) \times n$ adjacency matrix
 \[\Theta(n^2/p) \]
- **Step 2**: pairwise merging
 Performed by embedding a virtual tree on the processes
 \[\log p \text{ merging stages each taking } \Theta(n) = \Theta(n \log p) \]
 Communication time => Spanning forests (\(\Theta(n)\) edges) are sent between nearest neighbors
 \[\Theta(n \log p) \]

- \[T_p = \Theta(n^2/p) + \Theta(n \log p) \]
- Cost optimal if $p = O(n/\log n)$
- Isoefficiency due to communication and extra computation: \[\Theta(p^2 \log^2 p) \]
- Isoefficiency due to concurrency: \(\Theta(p) \)
- Overall isoefficiency: \(\Theta(p^2 \log^2 p) \)
 \[\text{=> same as Prim’s algorithm and Dijkstra’s algorithm} \]
Algorithms for Sparse Graphs

- **Sparse graphs**: \(|E| \ll |V|^2\)
- Algorithms based on the *adjacency list representation*
- *Lower bound* => \(\Omega(|V| + |E|)\)
- The lower bound depend on the sparseness of the graph.
- Difficult to achieve even work distribution and low communication overhead for sparse graphs
- Possible partitioning methods:
 - Assign an *equal number of vertices* and their adjacency list to each process => may lead to significant load imbalance
 - Assign *equal number of edges* to each process => may require splitting the adjacency list of a vertex => communication overhead increases
- Hard to derive efficient parallel formulations for general sparse graphs
- Efficient parallel formulations for some structured sparse graphs
Sparse Graphs

Linear graph

Grid graph

Random sparse graph
Maximal Independent Set (MIS)

- A set of vertices I is called independent if no pair of vertices in I is connected via an edge in G.
- I is a maximal independent set if by including any other vertex not in I, the independence property is violated.

\{a, d, i\} is an independent set
\{a, c, j, f, g\} is a maximal independent set
\{a, d, h, f\} is a maximal independent set
MIS: Simple Algorithm

- **Initially** \(I \) is empty and the set of candidates \(C = V \)
- **Algorithm:**

 while (\(C \) not empty)

 {
 move a vertex \(v \) from \(C \) into \(I \);
 remove all vertices adjacent to \(v \) from \(C \);
 }

- **Correctness:**

 - \(I \) is an *independent* set because all the vertices whose subsequent inclusion will violate the condition are removed from \(C \)

 - \(I \) is *maximal* because any other vertex that is not in \(I \) is adjacent to at least one of the vertices in \(I \).

- *Inherently serial!*
MIS: Luby’s Algorithm

- *Initially* I is empty and the set of candidates $C = V$
- *Algorithm:*
 while (C not empty)
 {
 - Assign a unique random number to each vertex in C
 - If a vertex has a random number smaller than all of
 the random numbers of the adjacent vertices, it is
 included in I.
 - Update C by removing the vertices included in I and
 their adjacent vertices.
 }
- *Suitable for parallelization!"
MIS: Luby's Algorithm

(a) After the 1st random number assignment

(b) After the 2nd random number assignment

(c) Final maximal independent set

- **Vertex in the independent set**
- **Vertex adjacent to a vertex in the independent set**
Luby’s Algorithm: Shared Address Space Formulation

- \(I[i] = 1 \) if \(v_i \) is part of the MIS, or 0 otherwise
- \(C[i] = 1 \) if vertex \(i \) is part of the candidate set, or 0 otherwise
- \(R[i] \) stores the random number assigned to vertex \(v_i \)
- During each iteration the vector \(C \) is partitioned among the \(p \) processes
- Each process:
 - Generates a random number for its assigned vertices from \(C \)
 - Wait for all processes to generate the random numbers
 - For each vertex assigned to it checks to see if it can be included in \(I \). If yes, set the corresponding entry of \(I \) to 1.
 - Updates \(C \).
- Concurrent writes of zero into \(C \) do not affect the correctness (same value is written).
Single-Source Shortest Paths: Johnson’s Algorithm

- A variant of Dijkstra’s algorithm
- Uses a *priority queue* Q to store the value $l[v]$ for each vertex in $V \setminus V_T$
- In the priority queue the element with the smallest value in l is always at the front
 => implemented as a *min-heap*
 => $O(\log n)$ time for update.
- Overall complexity => $O(|E| \log n)$
Single-Source Shortest Paths: Johnson’s Algorithm

procedure JOHNSON_SINGLE_SOURCE_SP(V, E, s) begin
 Q := V;
 for all v ∈ Q do
 l[v] := ∞;
 l[s] := 0;
 while Q ≠ ∅ do
 begin
 u := extract_min(Q);
 for each v ∈ Adj[u] do
 if v ∈ Q and l[u] + w(u, v) < l[v] then
 l[v] := l[u] + w(u, v);
 endwhile
 end JOHNSON_SINGLE_SOURCE_SP
Johnson’s Algorithm: Parallelization Strategy

• **Problem:** How to maintain the priority queue efficiently in a parallel implementation?

• **Simple strategy:**
 – P_0 maintains the queue
 – The other processes compute new values for $l[v]$ and send them to P_0 to update Q

• **Limitations:**
 – A single process updates Q => $O(|E| \log n)$ time
 => *No asymptotic speedup!*
 – During each iteration it updates roughly $|E|/|V|$ vertices
 => *No more than $|E|/|V|$ processes can be kept busy*

How to alleviate these limitations?
Johnson’s Algorithm: Parallelization Strategy

- **First limitation:**
 - Distribute the maintenance of Q to multiple processes => non-trivial
 - Achieves a small speedup of $O(\log n)$ (assuming one update takes $O(1)$)

- **Second limitation:**
 - Extract more than one vertex from Q at the same time.
 - If v at the top of Q, extract all vertices u that have $l[u] = l[v]$.
 - If we know that the minimum weight over all the edges is $m => extract all vertices such that $l[u] <= l[v] + m$ (these are called **safe vertices**, i.e. the update will not modify the next min in Q).

- **Complicated algorithm with limited concurrency.**
Johnson’s Algorithm: Parallelization Strategy

• **Alternate approach:**
 – Design a parallel algorithm that *processes both safe and unsafe vertices concurrently* as long as these safe edges can be reached from the source via a path involving vertices whose shortest paths have already been computed.
 – Each of the *p* processes extracts one of the top *p* vertices from *Q* and updates the value of adjacent vertices.

• Does not ensure that the *l* value of the vertices extracted from the priority queue corresponds to the cost of the shortest path.

• **Solution:** detect when we have incorrectly computed the shortest path to a vertex and insert it back into *Q* with the updated *l* value.

• *u* just extracted, *v* has already been extracted, *u* adjacent to *v* if
 \[l[v] + w(v,u) \leq l[u] \]
 then the shortest path to *u* incorrectly computed => insert back *u* with
 \[l[u] = l[v] + w(u,v) \]
Johnson’s Algorithm: Parallelization Strategy

Example: processing unsafe vertices concurrently

P₀: \(l[h] + w(h, g) = 5 < l[g] = 10 \) (from previous iteration)

=> insert \(g \) back into \(Q \) with \(l[g] = 5 \)
Johnson’s Algorithm: Distributed Memory Formulation

- **Idea**: remove the bottleneck of working with a single priority queue.
- \(V \) is partitioned among \(p \) processes
- \(P_i \) has:
 - a local priority queue \(Q_i \)
 - an array \(sp[] \) that store the shortest path from source to the vertices assigned to \(P_i \)
- \(sp[v] \) is updated from \(l[v] \) each time \(v \) is extracted from the queue.
- Initially, \(sp[v] = \infty \), \(sp[s] = 0 \)
- *Each process executes Johnson’s algorithm locally.*
- At the end \(sp[v] \) stores the shortest path from source to vertex \(v \).
Johnson’s Algorithm: Distributed Memory Formulation

- How to maintain the queues?
- Assume \((u,v) \) is an edge, \(P_i \) has just extracted \(u \) from \(Q_i \)
- \(P_i \) sends \(l[u] + w(u,v) \) to \(P_j \)
- \(P_j \) receives the message and sets the values of \(l[v] \) in \(Q_j \) to \(\min\{l[v], l[v] + w(u,v)\} \)
- \(P_j \) might have already computed \(sp[v] \) => two cases:
 - If \(sp[v] \leq l[u]+w(u,v) \) => longer path => \(P_j \) does nothing
 - If \(sp[v] > l[u]+w(u,v) \) => \(P_j \) must insert \(v \) back into \(Q_j \) with \(l[v] = l[u]+w(u,v) \) and disregards the value \(sp[v] \)
- The algorithm terminates when all the queues are empty.
Johnson’s Algorithm: Distributed Memory Formulation

The wave of activity in the priority queues for a grid graph